Gyroelongated square bipyramid

Last updated
Gyroelongated square bipyramid
Gyroelongated square dipyramid.png
Type Gyroelongated bipyramid,
Deltahedron,
Johnson
J16J17J18
Faces 16 triangles
Edges 24
Vertices 10
Vertex configuration
Symmetry group
Dual polyhedron Truncated square trapezohedron
Properties convex
Net
Johnsonkoerpernetz17.svg

In geometry, the gyroelongated square bipyramid is a polyhedron with 16 triangular faces. it can be constructed from a square antiprism by attaching two equilateral square pyramids to each of its square faces. The same shape is also called hexakaidecadeltahedron [1] , heccaidecadeltahedron, [2] or tetrakis square antiprism; [1] these last names mean a polyhedron with 16 triangular faces. It is an example of deltahedron, and of a Johnson solid.

Contents

The dual polyhedron of the gyroelongated square bipyramid is a square truncated trapezohedron with eight pentagons and two squares as its faces. The gyroelongated square pyramid appears in chemistry as the basis for the bicapped square antiprismatic molecular geometry, and in mathematical optimization as a solution to the Thomson problem.

Construction

Like other gyroelongated bipyramids, the gyroelongated square bipyramid can be constructed by attaching two equilateral square pyramids onto the square faces of a square antiprism; this process is known as gyroelongation. [3] [4] These pyramids cover each square, replacing it with four equilateral triangles, so that the resulting polyhedron has 16 equilateral triangles as its faces. A polyhedron with only equilateral triangles as faces is called a deltahedron. There are only eight different convex deltahedra, one of which is the gyroelongated square bipyramid. [5] More generally, the convex polyhedron in which all faces are regular is the Johnson solid, and every convex deltahedron is a Johnson solid. The gyroelongated square bipyramid is numbered among the Johnson solids as . [6]

One possible system of Cartesian coordinates for the vertices of a gyroelongated square bipyramid, giving it edge length 2, is: [1]

Properties

The surface area of a gyroelongated square bipyramid is 16 times the area of an equilateral triangle, that is: [4] and the volume of a gyroelongated square bipyramid is obtained by slicing it into two equilateral square pyramids and one square antiprism, and then adding their volume: [4]

3D model of a gyroelongated square bipyramid J17 gyroelongated square bipyramid.stl
3D model of a gyroelongated square bipyramid

It has the same three-dimensional symmetry group as the square antiprism, the dihedral group of of order 8. Its dihedral angle is similar to the gyroelongated square pyramid, by calculating the sum of the equilateral square pyramid and the square antiprism's angle in the following: [7]

The dual polyhedron of a gyroleongated square bipyramid is the square truncated trapezohedron.[ citation needed ] It has eight pentagons and two squares. [8]

Application

Gyroelongated square bipyramid can be visualized in the geometry of chemical compounds as the atom cluster surrounding a central atom as a polyhedron, and the compound of such cluster is the bicapped square antiprismatic molecular geometry. [9] It has 10 vertices and 24 edges, corresponding to the closo polyhedron with skeletal electrons. An example is nickel carbonyl carbide anion Ni10C(CO)2−
18
, a 22 skeletal electron chemical compound with ten Ni(CO)2 vertices and the deficiency of two carbon monoxides. [10]

The Thomson problem concerning the minimum-energy configuration of charged particles on a sphere. The minimum solution known for places the points at the vertices of a gyroelongated square bipyramid, inscribed in a sphere. [1]

Related Research Articles

<span class="mw-page-title-main">Regular icosahedron</span> Convex polyhedron with 20 triangular faces

In geometry, the regular icosahedron is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with regular faces to each of its pentagonal faces, or by putting points onto the cube. The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron.

In geometry, a Johnson solid, sometimes also known as a Johnson–Zalgaller solid, is a strictly convex polyhedron whose faces are regular polygons. They are sometimes defined to exclude the uniform polyhedrons. There are ninety-two solids with such a property: the first solids are the pyramids, cupolas. and a rotunda; some of the solids may be constructed by attaching with those previous solids, whereas others may not. These solids are named after mathematicians Norman Johnson and Victor Zalgaller.

In geometry, an octahedron is a polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Regular octahedra occur in nature as crystal structures. Many types of irregular octahedra also exist, including both convex and non-convex shapes.

A deltahedron is a polyhedron whose faces are all equilateral triangles. The deltahedron is named by Martyn Cundy, after the Greek capital letter delta resembling a triangular shape Δ. The deltahedron can be categorized by the property of convexity. There are eight convex deltahedra, which can be used in the applications of chemistry as in the polyhedral skeletal electron pair theory and chemical compounds. Omitting the convex property leaves the results in infinitely many deltahedrons alongside its subclasses recognition.

<span class="mw-page-title-main">Triangular bipyramid</span> Two tetrahedra joined by one face

A triangular bipyramid is a hexahedron with six triangular faces constructed by attaching two tetrahedra face-to-face. The same shape is also known as a triangular dipyramid or trigonal bipyramid. If these tetrahedra are regular, all faces of a triangular bipyramid are equilateral. It is an example of a deltahedron, composite polyhedron, and Johnson solid.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron, composite polyhedron, and Johnson solid.

<span class="mw-page-title-main">Pentagonal bipyramid</span> Two pentagonal pyramids joined at the bases

The pentagonal bipyramid is a polyhedron with ten triangular faces. It is constructed by attaching two pentagonal pyramids to each of their bases. If the triangular faces are equilateral, the pentagonal bipyramid is an example of deltahedra, composite polyhedron, and Johnson solid.

<span class="mw-page-title-main">Gyroelongated square pyramid</span> 10th Johnson solid (13 faces)

In geometry, the gyroelongated square pyramid is the Johnson solid that can be constructed by attaching an equilateral square pyramid to a square antiprism. It occurs in chemistry; for example, the square antiprismatic molecular geometry.

<span class="mw-page-title-main">Gyroelongated pentagonal pyramid</span> 11th Johnson solid (16 faces)

In geometry, the gyroelongated pentagonal pyramid is a polyhedron constructed by attaching a pentagonal antiprism to the base of a pentagonal pyramid. An alternative name is diminished icosahedron because it can be constructed by removing a pentagonal pyramid from a regular icosahedron.

<span class="mw-page-title-main">Square cupola</span> Cupola with octagonal base

In geometry, the square cupola is a cupola with an octagonal base. In the case of all edges being equal in length, it is a Johnson solid, a convex polyhedron with regular faces. It can be used to construct many other polyhedrons, particularly other Johnson solids.

<span class="mw-page-title-main">Elongated square gyrobicupola</span> 37th Johnson solid

In geometry, the elongated square gyrobicupola is a polyhedron constructed by two square cupolas attaching onto the bases of octagonal prism, with one of them rotated. It was once mistakenly considered a rhombicuboctahedron by many mathematicians. It is not considered to be an Archimedean solid because it lacks a set of global symmetries that map every vertex to every other vertex, unlike the 13 Archimedean solids. It is also a canonical polyhedron. For this reason, it is also known as pseudo-rhombicuboctahedron, Miller solid, or Miller–Askinuze solid.

<span class="mw-page-title-main">Gyroelongated square bicupola</span> 45th Johnson solid

In geometry, the gyroelongated square bicupola is the Johnson solid constructed by attaching two square cupolae on each base of octagonal antiprism. It has the property of chirality.

<span class="mw-page-title-main">Snub disphenoid</span> Convex polyhedron with 12 triangular faces

In geometry, the snub disphenoid is a convex polyhedron with 12 equilateral triangles as its faces. It is an example of deltahedron and Johnson solid. It can be constructed in different approaches. This shape also has alternative names called Siamese dodecahedron, triangular dodecahedron, trigonal dodecahedron, or dodecadeltahedron.

<span class="mw-page-title-main">Elongated square pyramid</span> Polyhedron with cube and square pyramid

In geometry, the elongated square pyramid is a convex polyhedron constructed from a cube by attaching an equilateral square pyramid onto one of its faces. It is an example of Johnson solid.

<span class="mw-page-title-main">Elongated square bipyramid</span> Cube capped by two square pyramids

In geometry, the elongated square bipyramid is the polyhedron constructed by attaching two equilateral square pyramids onto a cube's faces that are opposite each other. It can also be seen as 4 lunes linked together with squares to squares and triangles to triangles. It is also been named the pencil cube or 12-faced pencil cube due to its shape.

<span class="mw-page-title-main">Elongated pentagonal bipyramid</span> 16th Johnson solid; pentagonal prism capped by pyramids

In geometry, the elongated pentagonal bipyramid is a polyhedron constructed by attaching two pentagonal pyramids onto the base of a pentagonal prism. It is an example of Johnson solid.

<span class="mw-page-title-main">Biaugmented triangular prism</span> 50th Johnson solid

In geometry, the biaugmented triangular prism is a polyhedron constructed from a triangular prism by attaching two equilateral square pyramids onto two of its square faces. It is an example of Johnson solid. It can be found in stereochemistry in bicapped trigonal prismatic molecular geometry.

<span class="mw-page-title-main">Augmented pentagonal prism</span> 52nd Johnson solid

In geometry, the augmented pentagonal prism is a polyhedron that can be constructed by attaching an equilateral square pyramid onto the square face of pentagonal prism. It is an example of Johnson solid.

<span class="mw-page-title-main">Biaugmented pentagonal prism</span> 53rd Johnson solid

In geometry, the biaugmented pentagonal prism is a polyhedron constructed from a pentagonal prism by attaching two equilateral square pyramids onto each of its square faces. It is an example of Johnson solid.

<span class="mw-page-title-main">Triangular prism</span> Prism with a 3-sided base

In geometry, a triangular prism or trigonal prism is a prism with 2 triangular bases. If the edges pair with each triangle's vertex and if they are perpendicular to the base, it is a right triangular prism. A right triangular prism may be both semiregular and uniform.

References

  1. 1 2 3 4 Sloane, N. J. A.; Hardin, R. H.; Duff, T. D. S.; Conway, J. H. (1995), "Minimal-energy clusters of hard spheres", Discrete & Computational Geometry , 14 (3): 237–259, doi: 10.1007/BF02570704 , MR   1344734, S2CID   26955765
  2. Pugh, Anthony (1976), Polyhedron: A Visual Approach, University of California Press, p. 35.
  3. Rajwade, A. R. (2001), Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem, Texts and Readings in Mathematics, Hindustan Book Agency, doi:10.1007/978-93-86279-06-4, ISBN   978-93-86279-06-4 .
  4. 1 2 3 Berman, Martin (1971), "Regular-faced convex polyhedra", Journal of the Franklin Institute, 291 (5): 329–352, doi:10.1016/0016-0032(71)90071-8, MR   0290245 .
  5. Trigg, Charles W. (1978), "An Infinite Class of Deltahedra", Mathematics Magazine, 51 (1): 55–57, doi:10.2307/2689647, JSTOR   2689647 .
  6. Francis, Darryl (August 2013), "Johnson solids & their acronyms", Word Ways, 46 (3): 177.
  7. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics , 18: 169–200, doi:10.4153/cjm-1966-021-8, MR   0185507, Zbl   0132.14603 .
  8. de Corato, Marzio; Prosperio, Davide M.; Bernasconi, Marco; Benedek, Giorgio (2013), "Two C28 Clathretes", in Diudea, Mircea Vasile; Nagy, Csaba Levente (eds.), Diamond and Related Nanostructures, Springer, p. 8081, doi:10.1007/978-94-007-6371-5, ISBN   978-94-007-6371-5 .
  9. Remhov, Arndt; Černý, Radovan (2021), "Hydroborate as novel solid-state electrolytes", in Schorr, Susan; Weidenthaler, Claudia (eds.), Crystallography in Materials Science: From Structure-Property Relationships to Engineering, de Gruyter, p. 270, ISBN   978-3-11-067485-9 .
  10. King, R. Bruce (1993), Applications of Graph Theory and Topology in In Cluster and Coordination Chemistry, CRC Press, p. 102.