Pentagonal orthobirotunda

Last updated
Pentagonal orthobirotunda
Pentagonal orthobirotunda.png
Type Birotunda,
Johnson
J33J34J35
Faces 2x10 triangles
2+10 pentagons
Edges 60
Vertices 30
Vertex configuration 10(32.52)
2.10(3.5.3.5)
Symmetry group D5h
Dual polyhedron Trapezo-rhombic triacontahedron
Properties convex
Net
Johnson solid 34 net.png

In geometry, the pentagonal orthobirotunda is one of the Johnson solids (J34). It can be constructed by joining two pentagonal rotundae (J6) along their decagonal faces, matching like faces.

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids , Archimedean solids , prisms , or antiprisms ). They were named by Norman Johnson , who first listed these polyhedra in 1966. [1]

The pentagonal orthobirotunda is also related to an Archimedean solid, the icosidodecahedron, which can also be called a pentagonal gyrobirotunda, similarly created by two pentagonal rotunda but with a 36-degree rotation.

Dissected icosidodecahedron.png
(Dissection)
Icosidodecahedron.png
Icosidodecahedron
(pentagonal gyrobirotunda)
Pentagonal orthobirotunda solid.png
Pentagonal orthobirotunda
Pentagonal rotunda.png
Pentagonal rotunda


  1. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics , 18: 169–200, doi:10.4153/cjm-1966-021-8, MR   0185507, Zbl   0132.14603 .

Related Research Articles

Johnson solid 92 non-uniform convex polyhedra, with each face a regular polygon

In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that each face must be the same polygon, or that the same polygons join around each vertex. An example of a Johnson solid is the square-based pyramid with equilateral sides ; it has 1 square face and 4 triangular faces. Some authors require that the solid not be uniform before they refer to it as a “Johnson solid”.

Gyroelongated pentagonal pyramid 11th Johnson solid (16 faces)

In geometry, the gyroelongated pentagonal pyramid is one of the Johnson solids. As its name suggests, it is formed by taking a pentagonal pyramid and "gyroelongating" it, which in this case involves joining a pentagonal antiprism to its base.

Pentagonal rotunda 6th Johnson solid (17 faces)

In geometry, the pentagonal rotunda is one of the Johnson solids. It can be seen as half of an icosidodecahedron, or as half of a pentagonal orthobirotunda. It has a total of 17 faces.

Elongated pentagonal rotunda

In geometry, the elongated pentagonal rotunda is one of the Johnson solids (J21). As the name suggests, it can be constructed by elongating a pentagonal rotunda (J6) by attaching a decagonal prism to its base. It can also be seen as an elongated pentagonal orthobirotunda (J42) with one pentagonal rotunda removed.

Gyroelongated pentagonal rotunda

In geometry, the gyroelongated pentagonal rotunda is one of the Johnson solids (J25). As the name suggests, it can be constructed by gyroelongating a pentagonal rotunda (J6) by attaching a decagonal antiprism to its base. It can also be seen as a gyroelongated pentagonal birotunda (J48) with one pentagonal rotunda removed.

Elongated pentagonal gyrobirotunda 43rd Johnson solid

In geometry, the elongated pentagonal gyrobirotunda is one of the Johnson solids. As the name suggests, it can be constructed by elongating a "pentagonal gyrobirotunda," or icosidodecahedron, by inserting a decagonal prism between its congruent halves. Rotating one of the pentagonal rotundae through 36 degrees before inserting the prism yields an elongated pentagonal orthobirotunda.

Elongated pentagonal orthobirotunda 42nd Johnson solid

In geometry, the elongated pentagonal orthobirotunda is one of the Johnson solids. Its Conway polyhedron notation is at5jP5. As the name suggests, it can be constructed by elongating a pentagonal orthobirotunda by inserting a decagonal prism between its congruent halves. Rotating one of the pentagonal rotundae through 36 degrees before inserting the prism yields the elongated pentagonal gyrobirotunda.

Gyroelongated pentagonal birotunda

In geometry, the gyroelongated pentagonal birotunda is one of the Johnson solids (J48). As the name suggests, it can be constructed by gyroelongating a pentagonal birotunda by inserting a decagonal antiprism between its two halves.

Trigyrate rhombicosidodecahedron

In geometry, the trigyrate rhombicosidodecahedron is one of the Johnson solids (J75). It contains 20 triangles, 30 squares and 12 pentagons. It is also a canonical polyhedron.

Bilunabirotunda 91st Johnson solid (14 faces)

In geometry, the bilunabirotunda is one of the Johnson solids. A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra. They were named by Norman Johnson, who first listed these polyhedra in 1966.

Elongated pentagonal bipyramid 16th Johnson solid; pentagonal prism capped by pyramids

In geometry, the elongated pentagonal bipyramid or pentakis pentagonal prism is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal bipyramid by inserting a pentagonal prism between its congruent halves.

Gyroelongated pentagonal cupola

In geometry, the gyroelongated pentagonal cupola is one of the Johnson solids (J24). As the name suggests, it can be constructed by gyroelongating a pentagonal cupola (J5) by attaching a decagonal antiprism to its base. It can also be seen as a gyroelongated pentagonal bicupola (J46) with one pentagonal cupola removed.

Augmented pentagonal prism

In geometry, the augmented pentagonal prism is one of the Johnson solids (J52). As the name suggests, it can be constructed by augmenting a pentagonal prism by attaching a square pyramid (J1) to one of its equatorial faces.

Biaugmented pentagonal prism

In geometry, the biaugmented pentagonal prism is one of the Johnson solids (J53). As the name suggests, it can be constructed by doubly augmenting a pentagonal prism by attaching square pyramids (J1) to two of its nonadjacent equatorial faces.

Parabiaugmented dodecahedron

In geometry, the parabiaugmented dodecahedron is one of the Johnson solids (J59). It can be seen as a dodecahedron with two pentagonal pyramids (J2) attached to opposite faces. When pyramids are attached to a dodecahedron in other ways, they may result in an augmented dodecahedron, a metabiaugmented dodecahedron, a triaugmented dodecahedron, or even a pentakis dodecahedron if the faces are made to be irregular.

Bigyrate diminished rhombicosidodecahedron

In geometry, the bigyrate diminished rhombicosidodecahedron is one of the Johnson solids (J79). It can be constructed as a rhombicosidodecahedron with two pentagonal cupolae rotated through 36 degrees, and a third pentagonal cupola removed.

Gyrate bidiminished rhombicosidodecahedron

In geometry, the gyrate bidiminished rhombicosidodecahedron is one of the Johnson solids (J82). It can be produced by removing two pentagonal cupolae and rotating a third pentagonal cupola through 36 degrees.

Gyroelongated pentagonal bicupola 46th Johnson solid

In geometry, the gyroelongated pentagonal bicupola is one of the Johnson solids. As the name suggests, it can be constructed by gyroelongating a pentagonal bicupola by inserting a decagonal antiprism between its congruent halves.

Gyroelongated pentagonal cupolarotunda

In geometry, the gyroelongated pentagonal cupolarotunda is one of the Johnson solids (J47). As the name suggests, it can be constructed by gyroelongating a pentagonal cupolarotunda by inserting a decagonal antiprism between its two halves.

Birotunda Solid made from 2 rotunda joined base-to-base

In geometry, a birotunda is any member of a family of dihedral-symmetric polyhedra, formed from two rotunda adjoined through the largest face. They are similar to a bicupola but instead of alternating squares and triangles, it alternates pentagons and triangles around an axis. There are two forms, ortho- and gyro-: an orthobirotunda has one of the two rotundas is placed as the mirror reflection of the other, while in a gyrobirotunda one rotunda is twisted relative to the other.