Gyroelongated triangular cupola

Last updated
Gyroelongated triangular cupola
Gyroelongated triangular cupola.png
Type Johnson
J21 - J22 - J23
Faces 1+3x3+6 triangles
3 squares
1 hexagon
Edges 33
Vertices 15
Vertex configuration 3(3.4.3.4)
2.3(33.6)
6(34.4)
Symmetry group C3v
Dual polyhedron -
Properties convex
Net
Johnson solid 22 net.png

In geometry, the gyroelongated triangular cupola is one of the Johnson solids (J22). It can be constructed by attaching a hexagonal antiprism to the base of a triangular cupola (J3). This is called "gyroelongation", which means that an antiprism is joined to the base of a solid, or between the bases of more than one solid.

Contents

The gyroelongated triangular cupola can also be seen as a gyroelongated triangular bicupola (J44) with one triangular cupola removed. Like all cupolae, the base polygon has twice as many sides as the top (in this case, the bottom polygon is a hexagon because the top is a triangle).

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids , Archimedean solids , prisms , or antiprisms ). They were named by Norman Johnson , who first listed these polyhedra in 1966. [1]

Formulae

The following formulae for volume and surface area can be used if all faces are regular, with edge length a: [2]

Dual polyhedron

The dual of the gyroelongated triangular cupola has 15 faces: 6 kites, 3 rhombi, and 6 pentagons.

Dual gyroelongated triangular cupolaNet of dual
Dual gyroelongated triangular cupola.png Dual gyroelongated triangular cupola net.png

References

  1. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics , 18: 169–200, doi:10.4153/cjm-1966-021-8, MR   0185507, Zbl   0132.14603 .
  2. Stephen Wolfram, "Gyroelongated triangular cupola" from Wolfram Alpha. Retrieved July 22, 2010.