Mahler volume

Last updated

In convex geometry, the Mahler volume of a centrally symmetric convex body is a dimensionless quantity that is associated with the body and is invariant under linear transformations. It is named after German-English mathematician Kurt Mahler. It is known that the shapes with the largest possible Mahler volume are the balls and solid ellipsoids; this is now known as the Blaschke–Santaló inequality. The still-unsolved Mahler conjecture states that the minimum possible Mahler volume is attained by a hypercube.

Contents

Definition

A convex body in Euclidean space is defined as a compact convex set with non-empty interior. If is a centrally symmetric convex body in -dimensional Euclidean space, the polar body is another centrally symmetric body in the same space, defined as the set

The Mahler volume of is the product of the volumes of and . [1]

If is an invertible linear transformation, then . Applying to multiplies its volume by and multiplies the volume of by . As these determinants are multiplicative inverses, the overall Mahler volume of is preserved by linear transformations.

Examples

The polar body of an -dimensional unit sphere is itself another unit sphere. Thus, its Mahler volume is just the square of its volume,

where is the Gamma function. By affine invariance, any ellipsoid has the same Mahler volume. [1]

The polar body of a polyhedron or polytope is its dual polyhedron or dual polytope. In particular, the polar body of a cube or hypercube is an octahedron or cross polytope. Its Mahler volume can be calculated as [1]

The Mahler volume of the sphere is larger than the Mahler volume of the hypercube by a factor of approximately . [1]

Extreme shapes

Unsolved problem in mathematics:

Is the Mahler volume of a centrally symmetric convex body always at least that of the hypercube of the same dimension?

The Blaschke–Santaló inequality states that the shapes with maximum Mahler volume are the spheres and ellipsoids. The three-dimensional case of this result was proven by WilhelmBlaschke  ( 1917 ); the full result was proven much later by LuisSantaló  ( 1949 ) using a technique known as Steiner symmetrization by which any centrally symmetric convex body can be replaced with a more sphere-like body without decreasing its Mahler volume. [1]

The shapes with the minimum known Mahler volume are hypercubes, cross polytopes, and more generally the Hanner polytopes which include these two types of shapes, as well as their affine transformations. The Mahler conjecture states that the Mahler volume of these shapes is the smallest of any n-dimensional symmetric convex body; it remains unsolved when . As Terry Tao writes: [1]

The main reason why this conjecture is so difficult is that unlike the upper bound, in which there is essentially only one extremiser up to affine transformations (namely the ball), there are many distinct extremisers for the lower bound - not only the cube and the octahedron, but also products of cubes and octahedra, polar bodies of products of cubes and octahedra, products of polar bodies of… well, you get the idea. It is really difficult to conceive of any sort of flow or optimisation procedure which would converge to exactly these bodies and no others; a radically different type of argument might be needed.

Bourgain & Milman (1987) proved that the Mahler volume is bounded below by times the volume of a sphere for some absolute constant , matching the scaling behavior of the hypercube volume but with a smaller constant. Kuperberg (2008) proved that, more concretely, one can take in this bound. A result of this type is known as a reverse Santaló inequality.

Partial results

For asymmetric bodies

The Mahler volume can be defined in the same way, as the product of the volume and the polar volume, for convex bodies whose interior contains the origin regardless of symmetry. Mahler conjectured that, for this generalization, the minimum volume is obtained by a simplex, with its centroid at the origin. As with the symmetric Mahler conjecture, reverse Santaló inequalities are known showing that the minimum volume is at least within an exponential factor of the simplex. [2]

Notes

Related Research Articles

<span class="mw-page-title-main">Convex set</span> In geometry, set whose intersection with every line is a single line segment

In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment . For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex.

<span class="mw-page-title-main">Dual polyhedron</span> Polyhedron associated with another by swapping vertices for faces

In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.

<span class="mw-page-title-main">Tesseract</span> Four-dimensional analogue of the cube

In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. Just as the perimeter of the square consists of four edges and the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eight cubical cells, meeting at right angles. The tesseract is one of the six convex regular 4-polytopes.

<span class="mw-page-title-main">Hypercube</span> Convex polytope, the n-dimensional analogue of a square and a cube

In geometry, a hypercube is an n-dimensional analogue of a square and a cube. It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length. A unit hypercube's longest diagonal in n dimensions is equal to .

<span class="mw-page-title-main">Geodesic</span> Straight path on a curved surface or a Riemannian manifold

In geometry, a geodesic is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Ball (mathematics)</span> Volume space bounded by a sphere

In mathematics, a ball is the solid figure bounded by a sphere; it is also called a solid sphere. It may be a closed ball or an open ball.

In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In -dimensional space the inequality lower bounds the surface area or perimeter of a set by its volume ,

<span class="mw-page-title-main">Net (polyhedron)</span> Edge-joined polygons which fold into a polyhedron

In geometry, a net of a polyhedron is an arrangement of non-overlapping edge-joined polygons in the plane which can be folded to become the faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and solid geometry in general, as they allow for physical models of polyhedra to be constructed from material such as thin cardboard.

In mathematics, an operad is a structure that consists of abstract operations, each one having a fixed finite number of inputs (arguments) and one output, as well as a specification of how to compose these operations. Given an operad , one defines an algebra over to be a set together with concrete operations on this set which behave just like the abstract operations of . For instance, there is a Lie operad such that the algebras over are precisely the Lie algebras; in a sense abstractly encodes the operations that are common to all Lie algebras. An operad is to its algebras as a group is to its group representations.

<span class="mw-page-title-main">Luis Santaló</span> Spanish mathematician

Luís Antoni Santaló Sors was a Spanish mathematician.

<span class="mw-page-title-main">Convex body</span> Non-empty convex set in Euclidean space

In mathematics, a convex body in -dimensional Euclidean space is a compact convex set with non-empty interior. Some authors do not require a non-empty interior, merely that the set is non-empty.

<span class="mw-page-title-main">Hadwiger conjecture (combinatorial geometry)</span>

In combinatorial geometry, the Hadwiger conjecture states that any convex body in n-dimensional Euclidean space can be covered by 2n or fewer smaller bodies homothetic with the original body, and that furthermore, the upper bound of 2n is necessary if and only if the body is a parallelepiped. There also exists an equivalent formulation in terms of the number of floodlights needed to illuminate the body.

<span class="mw-page-title-main">Smoothed octagon</span>

The smoothed octagon is a region in the plane found by Karl Reinhardt in 1934 and conjectured by him to have the lowest maximum packing density of the plane of all centrally symmetric convex shapes. It was also independently discovered by Kurt Mahler in 1947. It is constructed by replacing the corners of a regular octagon with a section of a hyperbola that is tangent to the two sides adjacent to the corner and asymptotic to the sides adjacent to these.

In convex geometry, the projection body of a convex body in n-dimensional Euclidean space is the convex body such that for any vector , the support function of in the direction u is the (n – 1)-dimensional volume of the projection of K onto the hyperplane orthogonal to u.

In geometry, a Hanner polytope is a convex polytope constructed recursively by Cartesian product and polar dual operations. Hanner polytopes are named after Olof Hanner, who introduced them in 1956.

In geometry, Kalai's 3d conjecture is a conjecture on the polyhedral combinatorics of centrally symmetric polytopes, made by Gil Kalai in 1989. It states that every d-dimensional centrally symmetric polytope has at least 3d nonempty faces.

In geometry, it is an unsolved conjecture of Hugo Hadwiger that every simplex can be dissected into orthoschemes, using a number of orthoschemes bounded by a function of the dimension of the simplex. If true, then more generally every convex polytope could be dissected into orthoschemes.

In convex geometry and the geometry of convex polytopes, the Blaschke sum of two polytopes is a polytope that has a facet parallel to each facet of the two given polytopes, with the same measure. When both polytopes have parallel facets, the measure of the corresponding facet in the Blaschke sum is the sum of the measures from the two given polytopes.

References