Mahler volume

Last updated

In convex geometry, the Mahler volume of a centrally symmetric convex body is a dimensionless quantity that is associated with the body and is invariant under linear transformations. It is named after German-English mathematician Kurt Mahler. It is known that the shapes with the largest possible Mahler volume are the balls and solid ellipsoids; this is now known as the Blaschke–Santaló inequality. The still-unsolved Mahler conjecture states that the minimum possible Mahler volume is attained by a hypercube.

Contents

Definition

A convex body in Euclidean space is defined as a compact convex set with non-empty interior. If is a centrally symmetric convex body in -dimensional Euclidean space, the polar body is another centrally symmetric body in the same space, defined as the set The Mahler volume of is the product of the volumes of and . [1]

If is an invertible linear transformation, then . Applying to multiplies its volume by and multiplies the volume of by . As these determinants are multiplicative inverses, the overall Mahler volume of is preserved by linear transformations.

Examples

The polar body of an -dimensional unit sphere is itself another unit sphere. Thus, its Mahler volume is just the square of its volume,

where is the Gamma function. By affine invariance, any ellipsoid has the same Mahler volume. [1]

The polar body of a polyhedron or polytope is its dual polyhedron or dual polytope. In particular, the polar body of a cube or hypercube is an octahedron or cross polytope. Its Mahler volume can be calculated as [1]

The Mahler volume of the sphere is larger than the Mahler volume of the hypercube by a factor of approximately . [1]

Extreme shapes

Unsolved problem in mathematics:
Is the Mahler volume of a centrally symmetric convex body always at least that of the hypercube of the same dimension?

The Blaschke–Santaló inequality states that the shapes with maximum Mahler volume are the spheres and ellipsoids. The three-dimensional case of this result was proven by WilhelmBlaschke  ( 1917 ); the full result was proven much later by LuisSantaló  ( 1949 ) using a technique known as Steiner symmetrization by which any centrally symmetric convex body can be replaced with a more sphere-like body without decreasing its Mahler volume. [1]

The shapes with the minimum known Mahler volume are hypercubes, cross polytopes, and more generally the Hanner polytopes which include these two types of shapes, as well as their affine transformations. The Mahler conjecture states that the Mahler volume of these shapes is the smallest of any n-dimensional symmetric convex body; it remains unsolved when . As Terry Tao writes: [1]

The main reason why this conjecture is so difficult is that unlike the upper bound, in which there is essentially only one extremiser up to affine transformations (namely the ball), there are many distinct extremisers for the lower bound - not only the cube and the octahedron, but also products of cubes and octahedra, polar bodies of products of cubes and octahedra, products of polar bodies of… well, you get the idea. It is really difficult to conceive of any sort of flow or optimisation procedure which would converge to exactly these bodies and no others; a radically different type of argument might be needed.

Bourgain & Milman (1987) proved that the Mahler volume is bounded below by times the volume of a sphere for some absolute constant , matching the scaling behavior of the hypercube volume but with a smaller constant. Kuperberg (2008) proved that, more concretely, one can take in this bound. A result of this type is known as a reverse Santaló inequality.

Partial results

For asymmetric bodies

The Mahler volume can be defined in the same way, as the product of the volume and the polar volume, for convex bodies whose interior contains the origin regardless of symmetry. Mahler conjectured that, for this generalization, the minimum volume is obtained by a simplex, with its centroid at the origin. As with the symmetric Mahler conjecture, reverse Santaló inequalities are known showing that the minimum volume is at least within an exponential factor of the simplex. [11]

Notes

  1. 1 2 3 4 5 6 Tao (2007).
  2. Mahler, Kurt (1939). "Ein Minimalproblem für konvexe Polygone". Mathematica (Zutphen) B: 118–127.
  3. Iriyeh, Hiroshi; Shibata, Masataka (2020). "Symmetric Mahler's conjecture for the volume product in the 3-dimensional case". Duke Mathematical Journal . 169 (6): 1077–1134. arXiv: 1706.01749 . doi:10.1215/00127094-2019-0072. MR   4085078.
  4. Nazarov et al. (2010)
  5. Kim, Jaegil (2014). "Minimal volume product near Hanner polytopes". Journal of Functional Analysis. 266 (4): 2360–2402. doi: 10.1016/j.jfa.2013.08.008 .
  6. Reisner, Shlomo (1986). "Zonoids with minimal volume-product". Mathematische Zeitschrift. 192 (3): 339–346. doi:10.1007/BF01164009.
  7. Saint-Raymond, J. (1980). "Sur le volume des corps convexes symétriques". Séminaire d'initiation à l'analyse. 81.
  8. Meyer, Mathieu (1986). "Une caractérisation volumique de certains espaces normés de dimension finie". Israel Journal of Mathematics . 55 (3): 317–326. doi:10.1007/BF02765029.
  9. Barthe, F.; Fradelizi, M. (April 2013). "The volume product of convex bodies with many symmetries". American Journal of Mathematics. 135 (2): 311–347. doi:10.1353/ajm.2013.0018. JSTOR   23525797.
  10. Reisner, Shlomo; Schütt, Carsten; Werner, Elisabeth M. (2012). "Mahler's Conjecture and Curvature". International Mathematics Research Notices. 2012 (1): 1–16. arXiv: 1009.3583 . doi:10.1093/imrn/rnr003.
  11. Kuperberg (2008).

Related Research Articles

<span class="mw-page-title-main">Cube</span> Solid object with six equal square faces

In geometry, a cube is a three-dimensional solid object bounded by six square faces. It has twelve edges and eight vertices. It can be represented as a rectangular cuboid with six square faces, or a parallelepiped with equal edges. It is an example of many type of solids: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron.

<span class="mw-page-title-main">Convex set</span> In geometry, set whose intersection with every line is a single line segment

In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment . For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex.

<span class="mw-page-title-main">Dual polyhedron</span> Polyhedron associated with another by swapping vertices for faces

In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.

<span class="mw-page-title-main">Tesseract</span> Four-dimensional analogue of the cube

In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. Just as the perimeter of the square consists of four edges and the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eight cubical cells, meeting at right angles. The tesseract is one of the six convex regular 4-polytopes.

<span class="mw-page-title-main">Hypercube</span> Convex polytope, the n-dimensional analogue of a square and a cube

In geometry, a hypercube is an n-dimensional analogue of a square and a cube. It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length. A unit hypercube's longest diagonal in n dimensions is equal to .

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Ball (mathematics)</span> Volume space bounded by a sphere

In mathematics, a ball is the solid figure bounded by a sphere; it is also called a solid sphere. It may be a closed ball or an open ball.

<span class="mw-page-title-main">Cross-polytope</span> Regular polytope dual to the hypercube in any number of dimensions

In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in n-dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahedron, and a 4-dimensional cross-polytope is a 16-cell. Its facets are simplexes of the previous dimension, while the cross-polytope's vertex figure is another cross-polytope from the previous dimension.

<span class="mw-page-title-main">Net (polyhedron)</span> Edge-joined polygons which fold into a polyhedron

In geometry, a net of a polyhedron is an arrangement of non-overlapping edge-joined polygons in the plane which can be folded to become the faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and solid geometry in general, as they allow for physical models of polyhedra to be constructed from material such as thin cardboard.

In mathematics, an operad is a structure that consists of abstract operations, each one having a fixed finite number of inputs (arguments) and one output, as well as a specification of how to compose these operations. Given an operad , one defines an algebra over to be a set together with concrete operations on this set which behave just like the abstract operations of . For instance, there is a Lie operad such that the algebras over are precisely the Lie algebras; in a sense abstractly encodes the operations that are common to all Lie algebras. An operad is to its algebras as a group is to its group representations.

Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences.

<span class="mw-page-title-main">Uniform 6-polytope</span> Uniform 6-dimensional polytope

In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes.

<span class="mw-page-title-main">Luis Santaló</span> Spanish mathematician

Luís Antoni Santaló Sors was a Spanish mathematician.

<span class="mw-page-title-main">Convex body</span> Non-empty convex set in Euclidean space

In mathematics, a convex body in -dimensional Euclidean space is a compact convex set with non-empty interior. Some authors do not require a non-empty interior, merely that the set is non-empty.

In convex geometry, the projection body of a convex body in n-dimensional Euclidean space is the convex body such that for any vector , the support function of in the direction u is the (n – 1)-dimensional volume of the projection of K onto the hyperplane orthogonal to u.

In geometry, a Hanner polytope is a convex polytope constructed recursively by Cartesian product and polar dual operations. Hanner polytopes are named after Olof Hanner, who introduced them in 1956.

In geometry, more specifically in polytope theory, Kalai's 3d conjecture is a conjecture on the polyhedral combinatorics of centrally symmetric polytopes, made by Gil Kalai in 1989. It states that every d-dimensional centrally symmetric polytope has at least 3d nonempty faces.

Olof Hanner was a Swedish mathematician.

In convex geometry and the geometry of convex polytopes, the Blaschke sum of two polytopes is a polytope that has a facet parallel to each facet of the two given polytopes, with the same measure. When both polytopes have parallel facets, the measure of the corresponding facet in the Blaschke sum is the sum of the measures from the two given polytopes.

References