Infinite skew polygon

Last updated

In geometry, an infinite skew polygon or skew apeirogon is an infinite 2-polytope with vertices that are not all colinear. Infinite zig-zag skew polygons are 2-dimensional infinite skew polygons with vertices alternating between two parallel lines. Infinite helical polygons are 3-dimensional infinite skew polygons with vertices on the surface of a cylinder.

Contents

Regular infinite skew polygons exist in the Petrie polygons of the affine and hyperbolic Coxeter groups. They are constructed a single operator as the composite of all the reflections of the Coxeter group.

Regular zig-zag skew apeirogons in two dimensions

Regular zig-zag skew apeirogon
Regular zig-zag.svg
Edges and vertices
Schläfli symbol {∞}#{ }
Symmetry group D∞d, [2+,∞], (2*∞)
The angled edges of an apeirogonal antiprism represent a regular zig-zag skew apeirogon. Infinite antiprism.svg
The angled edges of an apeirogonal antiprism represent a regular zig-zag skew apeirogon.

A regular zig-zag skew apeirogon has (2*∞), D∞d Frieze group symmetry.

Regular zig-zag skew apeirogons exist as Petrie polygons of the three regular tilings of the plane: {4,4}, {6,3}, and {3,6}. These regular zig-zag skew apeirogons have internal angles of 90°, 120°, and 60° respectively, from the regular polygons within the tilings:

Petrie polygons of the three regular tilings of the plane
Petrie polygons of regular tilings.png

Isotoxal skew apeirogons in two dimensions

An isotoxal apeirogon has one edge type, between two alternating vertex types. There's a degree of freedom in the internal angle, α. {∞α} is the dual polygon of an isogonal skew apeirogon.

{∞} Isotoxal linear apeirogon.png
{∞30°} Isotoxal skew apeirogon.svg

Isogonal skew apeirogons in two dimensions

Isogonal zig-zag skew apeirogons in two dimensions

An isogonal skew apeirogon alternates two types of edges with various Frieze group symmetries. Distorted regular zig-zag skew apeirogons produce isogonal zig-zag skew apeirogons with translational symmetry:

p1, [∞]+, (∞∞), C
Isogonal apeirogon skew-equal.png
Isogonal apeirogon skew-unequal.png
Isogonal apeirogon.png
Isogonal apeirogon skew-unequal-backwards.png

Isogonal elongated skew apeirogons in two dimensions

Other isogonal skew apeirogons have alternate edges parallel to the Frieze direction. These isogonal elongated skew apeirogons have vertical mirror symmetry in the midpoints of the edges parallel to the Frieze direction:

p2mg, [2+,∞], (2*∞), D∞d
Isogonal apeirogon2.png
Isogonal apeirogon2-rectangle.png
Isogonal apeirogon2a.png
Isogonal apeirogon2b.png
Isogonal apeirogon2c.png
Isogonal apeirogon2d.png

Quasiregular elongated skew apeirogons in two dimensions

An isogonal elongated skew apeirogon has two different edge types; if both of its edge types have the same length: it can't be called regular because its two edge types are still different ("trans-edge" and "cis-edge"), but it can be called quasiregular.

Example quasiregular elongated skew apeirogons can be seen as truncated Petrie polygons in truncated regular tilings of the Euclidean plane:

Quasiregular skew apeirogon in truncated tilings.png

Hyperbolic skew apeirogons

Infinite regular skew polygons are similarly found in the Euclidean plane and in the hyperbolic plane.

Hyperbolic infinite regular skew polygons also exist as Petrie polygons zig-zagging edge paths on all regular tilings of the hyperbolic plane. And again like in the Euclidean plane, hyperbolic infinite quasiregular skew polygons can be constructed as truncated Petrie polygons within the edges of all truncated regular tilings of the hyperbolic plane.

Regular and uniform tilings with infinite skew polygons in the hyperbolic plane
{3,7} t{3,7}
Order-7 triangular tiling petrie polygon.png
Regular skew
Quasiregular skew apeirogon in truncated order-7 triangular tiling.png
Quasiregular skew

Infinite helical polygons in three dimensions

A regular apeirogon in 3-dimensions
{∞} # {3}
Triangular helix.png
An infinite regular helical polygon
(drawn in perspective)

An infinite helical (skew) polygon can exist in three dimensions, where the vertices can be seen as limited to the surface of a cylinder. The sketch on the right is a 3D perspective view of such an infinite regular helical polygon.

This infinite helical polygon can be mostly seen as constructed from the vertices in an infinite stack of uniform n-gonal prisms or antiprisms, although in general the twist angle is not limited to an integer divisor of 180°. An infinite helical (skew) polygon has screw axis symmetry.

An infinite stack of prisms, for example cubes, contain an infinite helical polygon across the diagonals of the square faces, with a twist angle of 90° and with a Schläfli symbol {∞} # {4}.

Cube stack diagonal-face helix apeirogon.png

An infinite stack of antiprisms, for example octahedra, makes infinite helical polygons, 3 here highlighted in red, green, and blue, each with a twist angle of 60° and with a Schläfli symbol {∞} # {6}.

Octahedron stack helix apeirogons.png

A sequence of edges of a Boerdijk–Coxeter helix can represent infinite regular helical polygons with an irrational twist angle:

Coxeter helix edges.png

Infinite isogonal helical polygons in three dimensions

A stack of right prisms can generate isogonal helical apeirogons alternating edges around axis, and along axis; for example a stack of cubes can generate this isogonal helical apeirogon alternating red and blue edges:

Cubic stack isogonal helical apeirogon.png

Similarly an alternating stack of prisms and antiprisms can produce an infinite isogonal helical polygon; for example, a triangular stack of prisms and antiprisms with an infinite isogonal helical polygon:

Elongated octahedron stack isogonal helical apeirogon.png

An infinite isogonal helical polygon with an irrational twist angle can also be constructed from truncated tetrahedra stacked like a Boerdijk–Coxeter helix, alternating two types of edges, between pairs of hexagonal faces and pairs of triangular faces:

Quasiregular helix apeirogon in truncated Coxeter helix.png

Related Research Articles

Hexagon Shape with six sides

In geometry, a hexagon is a six-sided polygon or 6-gon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.

Octagon Polygon shape with eight sides

In geometry, an octagon is an eight-sided polygon or 8-gon.

Decagon Shape with ten sides

In geometry, a decagon is a ten-sided polygon or 10-gon. The total sum of the interior angles of a simple decagon is 1440°.

Dodecagon Polygon with 12 edges

In geometry, a dodecagon or 12-gon is any twelve-sided polygon.

In geometry, a polytope or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.

Uniform polyhedron Class of mathematical solids

A uniform polyhedron has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent.

Cubic honeycomb Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

Apeirogon Polygon with infinitely many sides

In geometry, an apeirogon or infinite polygon is a generalized polygon with a countably infinite number of sides. Apeirogons are the two-dimensional case of infinite polytopes.

Tetradecagon Polygon with 14 edges .

In geometry, a tetradecagon or tetrakaidecagon or 14-gon is a fourteen-sided polygon.

In geometry, a polytope or a tiling is isotoxal or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation and/or reflection that will move one edge to the other, while leaving the region occupied by the object unchanged.

Hexadecagon Polygon with 16 edges

In mathematics, a hexadecagon is a sixteen-sided polygon.

Skew polygon Polygon whose vertices are not all coplanar

In geometry, a skew polygon is a polygon whose vertices are not all coplanar. Skew polygons must have at least four vertices. The interior surface of such a polygon is not uniquely defined.

Uniform polytope

A uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons.

Octadecagon Polygon with 18 edges

In geometry, an octadecagon or 18-gon is an eighteen-sided polygon.

In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.

In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.

In hyperbolic geometry, a uniform hyperbolic tiling is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent, and the tiling has a high degree of rotational and translational symmetry.

Icositetragon Polygon with 24 edges

In geometry, an icositetragon or 24-gon is a twenty-four-sided polygon. The sum of any icositetragon's interior angles is 3960 degrees.

References