Compound of five tetrahedra

Last updated
Compound of five tetrahedra
Compound of five tetrahedra.png
Type Regular compound
Coxeter symbol{5,3}[5{3,3}] {3,5} [1]
IndexUC5, W24
Elements
(As a compound)
5 tetrahedra:
F = 20, E = 30, V = 20
Dual compound Self-dual
Symmetry group chiral icosahedral (I)
Subgroup restricting to one constituent chiral tetrahedral (T)
3D model of a compound of five tetrahedra Compound of five tetrahedra (full).stl
3D model of a compound of five tetrahedra

The compound of five tetrahedra is one of the five regular polyhedral compounds. This compound polyhedron is also a stellation of the regular icosahedron. It was first described by Edmund Hess in 1876.

Contents

It can be seen as a faceting of a regular dodecahedron.

As a compound

It can be constructed by arranging five tetrahedra in rotational icosahedral symmetry (I), as colored in the upper right model. It is one of five regular compounds which can be constructed from identical Platonic solids. [2]

It shares the same vertex arrangement as a regular dodecahedron.

There are two enantiomorphous forms (the same figure but having opposite chirality) of this compound polyhedron. Both forms together create the reflection symmetric compound of ten tetrahedra.

It has a density of higher than 1.

Spherical compound of five tetrahedra.png
As a spherical tiling
CompoundOfFiveTetrahedra.png
Transparent Models
(Animation)
Five tetrahedra.png
Five interlocked tetrahedra

As a stellation

It can also be obtained by stellating the icosahedron, and is given as Wenninger model index 24. [3]

Stellation diagram Stellation core Convex hull
Compound of five tetrahedra stellation facets.svg Icosahedron.png
Icosahedron
Dodecahedron.png
Dodecahedron

As a faceting

Five tetrahedra in a dodecahedron. Chiroicosahedron-in-dodecahedron.png
Five tetrahedra in a dodecahedron.

It is a faceting of a dodecahedron, as shown at left.

Group theory

The compound of five tetrahedra is a geometric illustration of the notion of orbits and stabilizers, as follows.

The symmetry group of the compound is the (rotational) icosahedral group I of order 60, while the stabilizer of a single chosen tetrahedron is the (rotational) tetrahedral group T of order 12, and the orbit space I/T (of order 60/12 = 5) is naturally identified with the 5 tetrahedra – the coset gT corresponds to which tetrahedron g sends the chosen tetrahedron to.

An unusual dual property

Compound of five tetrahedra Second compound stellation of icosahedron.svg
Compound of five tetrahedra

This compound is unusual, in that the dual figure is the enantiomorph of the original. If the faces are twisted to the right, then the vertices are twisted to the left. When we dualise, the faces dualise to right-twisted vertices and the vertices dualise to left-twisted faces, giving the chiral twin. Figures with this property are extremely rare.

In 4-dimensional space

The compound of five tetrahedra is related to the regular 5-cell, the 4-simplex regular 4-polytope, which is also composed of 5 regular tetrahedra. In the 5-cell the tetrahedra are bonded face-to-face such that each triangular face is shared by two tetrahedral cells.

The compound of five tetrahedra occurs embedded in 4-dimensional space, inscribed in the 120 dodecahedral cells of the 120-cell. The 120-cell is the largest and most comprehensive regular 4-polytope; the regular 5-cell is the smallest and most elemental. The 120-cell contains inscribed within itself instances of every other regular 4-polytope. [4] In each of the 120-cell's dodecahedral cells, there are two inscribed instances of the compound of 5 tetrahedra (in other words, one instance of the compound of ten tetrahedra). The 5 tetrahedra of each compound of five occur as cells of another regular 4-polytope inscribed within the 120-cell, the 600-cell, which has 600 regular tetrahedra as its cells. The 120-cell is a compound of 5 disjoint 600-cells, and each of its dodecahedral cells is a compound of 5 tetrahedral cells, one cell from each of the 5 disjoint 600-cells.

See also

Citations

  1. Coxeter 1973, p. 98.
  2. Coxeter 1973, pp. 47–50, §3.6 The five regular compounds.
  3. Coxeter 1973, pp. 96–104, §6.2 Stellating the Platonic solids.
  4. Coxeter 1973, p. 269, Compounds; "It is remarkable that the vertices of {5, 3, 3} include the vertices of all the other fifteen regular polytopes in four dimensions."

Related Research Articles

<span class="mw-page-title-main">Regular icosahedron</span> Polyhedron with 20 regular triangular faces

In geometry, the regular icosahedron is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with regular faces to each of its pentagonal faces, or by putting points onto the cube. The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of the Platonic solid and of the deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron.

In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

<span class="mw-page-title-main">Stellation</span> Extending the elements of a polytope to form a new figure

In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from Latin stella, "star". Stellation is the reciprocal or dual process to faceting.

A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.

<span class="mw-page-title-main">600-cell</span> Four-dimensional analog of the icosahedron

In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,3,5}. It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from "tetrahedral complex") and a polytetrahedron, being bounded by tetrahedral cells.

<span class="mw-page-title-main">120-cell</span> Four-dimensional analog of the dodecahedron

In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid.

<span class="mw-page-title-main">Great icosahedron</span> Kepler-Poinsot polyhedron with 20 faces

In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra, with Schläfli symbol {3,52} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.

<span class="mw-page-title-main">Snub 24-cell</span>

In geometry, the snub 24-cell or snub disicositetrachoron is a convex uniform 4-polytope composed of 120 regular tetrahedral and 24 icosahedral cells. Five tetrahedra and three icosahedra meet at each vertex. In total it has 480 triangular faces, 432 edges, and 96 vertices. One can build it from the 600-cell by diminishing a select subset of icosahedral pyramids and leaving only their icosahedral bases, thereby removing 480 tetrahedra and replacing them with 24 icosahedra.

<span class="mw-page-title-main">Order-5 cubic honeycomb</span> Regular tiling of hyperbolic 3-space

In hyperbolic geometry, the order-5 cubic honeycomb is one of four compact regular space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {4,3,5}, it has five cubes {4,3} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.

<span class="mw-page-title-main">Regular dodecahedron</span> Polyhedron with 12 regular pentagonal faces

A regular dodecahedron or pentagonal dodecahedron is a dodecahedron that is regular, which is composed of 12 regular pentagonal faces, three meeting at each vertex. It is one of the five Platonic solids. It has 12 faces, 20 vertices, 30 edges, and 160 diagonals. It is represented by the Schläfli symbol {5,3}.

<span class="mw-page-title-main">Compound of ten tetrahedra</span> Polyhedral compound

The compound of ten tetrahedra is one of the five regular polyhedral compounds. This polyhedron can be seen as either a stellation of the icosahedron or a compound. This compound was first described by Edmund Hess in 1876.

<span class="mw-page-title-main">Grand 600-cell</span> Regular star 4-polytope with 600 faces

In geometry, the grand 600-cell or grand polytetrahedron is a regular star 4-polytope with Schläfli symbol {3, 3, 5/2}. It is one of 10 regular Schläfli-Hess polytopes. It is the only one with 600 cells.

<span class="mw-page-title-main">Icosahedral 120-cell</span>

In geometry, the icosahedral 120-cell, polyicosahedron, faceted 600-cell or icosaplex is a regular star 4-polytope with Schläfli symbol {3,5,5/2}. It is one of 10 regular Schläfli-Hess polytopes.

In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.

<span class="mw-page-title-main">Regular 4-polytope</span> Four-dimensional analogues of the regular polyhedra in three dimensions

In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.

<span class="mw-page-title-main">Excavated dodecahedron</span>

In geometry, the excavated dodecahedron is a star polyhedron that looks like a dodecahedron with concave pentagonal pyramids in place of its faces. Its exterior surface represents the Ef1g1 stellation of the icosahedron. It appears in Magnus Wenninger's book Polyhedron Models as model 28, the third stellation of icosahedron.

In geometry, a pentagonal polytope is a regular polytope in n dimensions constructed from the Hn Coxeter group. The family was named by H. S. M. Coxeter, because the two-dimensional pentagonal polytope is a pentagon. It can be named by its Schläfli symbol as {5, 3n − 2} (dodecahedral) or {3n − 2, 5} (icosahedral).

<span class="mw-page-title-main">Tetrahedrally diminished dodecahedron</span> Family of derived polyhedra

In geometry, a tetrahedrally diminished dodecahedron is a topologically self-dual polyhedron made of 16 vertices, 30 edges, and 16 faces.

References

Notable stellations of the icosahedron
Regular Uniform duals Regular compounds Regular star Others
(Convex) icosahedron Small triambic icosahedron Medial triambic icosahedron Great triambic icosahedron Compound of five octahedra Compound of five tetrahedra Compound of ten tetrahedra Great icosahedron Excavated dodecahedron Final stellation
Zeroth stellation of icosahedron.svg First stellation of icosahedron.png Ninth stellation of icosahedron.png First compound stellation of icosahedron.png Second compound stellation of icosahedron.png Third compound stellation of icosahedron.png Sixteenth stellation of icosahedron.png Third stellation of icosahedron.svg Seventeenth stellation of icosahedron.png
Stellation diagram of icosahedron.svg Small triambic icosahedron stellation facets.svg Great triambic icosahedron stellation facets.svg Compound of five octahedra stellation facets.svg Compound of five tetrahedra stellation facets.svg Compound of ten tetrahedra stellation facets.svg Great icosahedron stellation facets.svg Excavated dodecahedron stellation facets.svg Echidnahedron stellation facets.svg
The stellation process on the icosahedron creates a number of related polyhedra and compounds with icosahedral symmetry.