Compound of five octahedra

Last updated
Compound of five octahedra
Compound of five octahedra.png
(see here for a 3D model)
Type Regular compound
IndexUC17, W23
Coxeter symbol[5{3,4}]2{3,5} [1]
Elements
(As a compound)
5 octahedra:
F = 40, E = 60, V = 30
Dual compound Compound of five cubes
Symmetry group icosahedral (Ih)
Subgroup restricting to one constituent pyritohedral (Th)
It is also a faceting of the icosidodecahedron. Small-icosiicosahedron-in-icosidodecahedron.png
It is also a faceting of the icosidodecahedron.

The compound of five octahedra is one of the five regular polyhedron compounds, and can also be seen as a stellation. It was first described by Edmund Hess in 1876. It is unique among the regular compounds for not having a regular convex hull. It can also be called a small icosicosahedron.

Contents

As a stellation

It is the second stellation of the icosahedron, and given as Wenninger model index 23.

It can be constructed by a rhombic triacontahedron with rhombic-based pyramids added to all the faces, as shown by the five colored model image. (This construction does not generate the regular compound of five octahedra, but shares the same topology and can be smoothly deformed into the regular compound.)

It has a density of greater than 1.

Stellation diagram Stellation core Convex hull
Compound of five octahedra stellation facets.svg Icosahedron.png
Icosahedron
Icosidodecahedron.png
Icosidodecahedron

As a compound

It can also be seen as a polyhedral compound of five octahedra arranged in icosahedral symmetry (Ih).

The spherical and stereographic projections of this compound look the same as those of the disdyakis triacontahedron.
But the convex solid's vertices on 3- and 5-fold symmetry axes (gray in the images below) correspond only to edge crossings in the compound.

Spherical polyhedronStereographic projections
2-fold3-fold5-fold
Spherical disdyakis triacontahedron as compound of five octahedra.png Disdyakis triacontahedron stereographic d2 colored.svg Disdyakis triacontahedron stereographic d3 colored.svg Disdyakis triacontahedron stereographic d5 colored.svg
Disdyakis triacontahedron stereographic d2 colored crop.svg Disdyakis triacontahedron stereographic d3 colored crop.svg Disdyakis triacontahedron stereographic d5 colored crop.svg
The area in the black circles below corresponds to the frontal hemisphere of the spherical polyhedron.

Replacing the octahedra by tetrahemihexahedra leads to the compound of five tetrahemihexahedra.

Other 5-octahedra compounds

A second 5-octahedra compound, with octahedral symmetry, also exists. It can be generated by adding a fifth octahedron to the standard 4-octahedra compound.

See also

References

  1. Regular polytopes, pp.49-50, p.98
Notable stellations of the icosahedron
Regular Uniform duals Regular compounds Regular star Others
(Convex) icosahedron Small triambic icosahedron Medial triambic icosahedron Great triambic icosahedron Compound of five octahedra Compound of five tetrahedra Compound of ten tetrahedra Great icosahedron Excavated dodecahedron Final stellation
Zeroth stellation of icosahedron.svg First stellation of icosahedron.png Ninth stellation of icosahedron.png First compound stellation of icosahedron.png Second compound stellation of icosahedron.png Third compound stellation of icosahedron.png Sixteenth stellation of icosahedron.png Third stellation of icosahedron.svg Seventeenth stellation of icosahedron.png
Stellation diagram of icosahedron.svg Small triambic icosahedron stellation facets.svg Great triambic icosahedron stellation facets.svg Compound of five octahedra stellation facets.svg Compound of five tetrahedra stellation facets.svg Compound of ten tetrahedra stellation facets.svg Great icosahedron stellation facets.svg Excavated dodecahedron stellation facets.svg Echidnahedron stellation facets.svg
The stellation process on the icosahedron creates a number of related polyhedra and compounds with icosahedral symmetry.