Compound of ten tetrahedra | |
---|---|
Type | regular compound |
Coxeter symbol | 2{5,3}[10{3,3}]2{3,5} [1] |
Index | UC6, W25 |
Elements (As a compound) | 10 tetrahedra: F = 40, E = 60, V = 20 |
Dual compound | Self-dual |
Symmetry group | icosahedral (Ih) |
Subgroup restricting to one constituent | chiral tetrahedral (T) |
The compound of ten tetrahedra is one of the five regular polyhedral compounds. This polyhedron can be seen as either a stellation of the icosahedron or a compound. This compound was first described by Edmund Hess in 1876.
It can be seen as a faceting of a regular dodecahedron.
It can also be seen as the compound of ten tetrahedra with full icosahedral symmetry (Ih). It is one of five regular compounds constructed from identical Platonic solids.
It shares the same vertex arrangement as a dodecahedron.
The compound of five tetrahedra represents two chiral halves of this compound (it can therefore be seen as a "compound of two compounds of five tetrahedra").
It can be made from the compound of five cubes by replacing each cube with a stella octangula on the cube's vertices (which results in a "compound of five compounds of two tetrahedra").
This polyhedron is a stellation of the icosahedron, and given as Wenninger model index 25.
Stellation diagram | Stellation core | Convex hull |
---|---|---|
Icosahedron | Dodecahedron |
It is also a facetting of the dodecahedron, as shown at left. Concave pentagrams can be seen on the compound where the pentagonal faces of the dodecahedron are positioned.
If it is treated as a simple non-convex polyhedron without self-intersecting surfaces, it has 180 faces (120 triangles and 60 concave quadrilaterals), 122 vertices (60 with degree 3, 30 with degree 4, 12 with degree 5, and 20 with degree 12), and 300 edges, giving an Euler characteristic of 122-300+180 = +2.
In geometry, a regular icosahedron is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces.
In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra.
In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.
In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent regular polygons, and the same number of faces meet at each vertex. There are only five such polyhedra:
In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from Latin stella, "star". Stellation is the reciprocal or dual process to faceting.
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.
In geometry, the rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Catalan solid, and the dual polyhedron of the icosidodecahedron. It is a zonohedron.
In geometry, the complete or final stellation of the icosahedron is the outermost stellation of the icosahedron, and is "complete" and "final" because it includes all of the cells in the icosahedron's stellation diagram. That is, every three intersecting face planes of the icosahedral core intersect either on a vertex of this polyhedron, or inside of it.
In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra, with Schläfli symbol {3,5⁄2} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.
The compound of five tetrahedra is one of the five regular polyhedral compounds. This compound polyhedron is also a stellation of the regular icosahedron. It was first described by Edmund Hess in 1876.
In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality.
A regular dodecahedron or pentagonal dodecahedron is a dodecahedron that is regular, which is composed of 12 regular pentagonal faces, three meeting at each vertex. It is one of the five Platonic solids. It has 12 faces, 20 vertices, 30 edges, and 160 diagonals. It is represented by the Schläfli symbol {5,3}.
The compound of five cubes is one of the five regular polyhedral compounds. It was first described by Edmund Hess in 1876.
The compound of five octahedra is one of the five regular polyhedron compounds. This polyhedron can be seen as either a polyhedral stellation or a compound. This compound was first described by Edmund Hess in 1876. It is unique among the regular compounds for not having a regular convex hull.
The compound of cube and octahedron is a polyhedron which can be seen as either a polyhedral stellation or a compound.
In geometry, this polyhedron can be seen as either a polyhedral stellation or a compound.
There are two different compounds of great icosahedron and great stellated dodecahedron: one is a dual compound and a stellation of the great icosidodecahedron, the other is a stellation of the icosidodecahedron.
In geometry, faceting is the process of removing parts of a polygon, polyhedron or polytope, without creating any new vertices.
In geometry, the excavated dodecahedron is a star polyhedron that looks like a dodecahedron with concave pentagonal pyramids in place of its faces. Its exterior surface represents the Ef1g1 stellation of the icosahedron. It appears in Magnus Wenninger's book Polyhedron Models as model 28, the third stellation of icosahedron.
Notable stellations of the icosahedron | |||||||||
Regular | Uniform duals | Regular compounds | Regular star | Others | |||||
(Convex) icosahedron | Small triambic icosahedron | Medial triambic icosahedron | Great triambic icosahedron | Compound of five octahedra | Compound of five tetrahedra | Compound of ten tetrahedra | Great icosahedron | Excavated dodecahedron | Final stellation |
---|---|---|---|---|---|---|---|---|---|
The stellation process on the icosahedron creates a number of related polyhedra and compounds with icosahedral symmetry. |