Complete quadrangle

Last updated
A complete quadrangle (at left) and a complete quadrilateral (at right). Complete-quads.svg
A complete quadrangle (at left) and a complete quadrilateral (at right).

In mathematics, specifically in incidence geometry and especially in projective geometry, a complete quadrangle is a system of geometric objects consisting of any four points in a plane, no three of which are on a common line, and of the six lines connecting the six pairs of points. Dually, a complete quadrilateral is a system of four lines, no three of which pass through the same point, and the six points of intersection of these lines. The complete quadrangle was called a tetrastigm by Lachlan (1893), and the complete quadrilateral was called a tetragram; those terms are occasionally still used.

Contents

Diagonals

The six lines of a complete quadrangle meet in pairs to form three additional points called the diagonal points of the quadrangle. Similarly, among the six points of a complete quadrilateral there are three pairs of points that are not already connected by lines; the line segments connecting these pairs are called diagonals. For points and lines in the Euclidean plane, the diagonal points cannot lie on a single line, and the diagonals cannot have a single point of triple crossing. Due to the discovery of the Fano plane, a finite geometry in which the diagonal points of a complete quadrangle are collinear, some authors have augmented the axioms of projective geometry with Fano's axiom that the diagonal points are not collinear, [1] while others have been less restrictive.

A set of contracted expressions for the parts of a complete quadrangle were introduced by G. B. Halsted: He calls the vertices of the quadrangle dots, and the diagonal points he calls codots. The lines of the projective space are called straights, and in the quadrangle they are called connectors. The "diagonal lines" of Coxeter are called opposite connectors by Halsted. Opposite connectors cross at a codot. The configuration of the complete quadrangle is a tetrastim. [2]

Projective properties

KLMN is a complete quadrangle;
D is the projective harmonic conjugate of C with respect to A and B. Pappusharmonic.svg
KLMN is a complete quadrangle;
D is the projective harmonic conjugate of C with respect to A and B.

As systems of points and lines in which all points belong to the same number of lines and all lines contain the same number of points, the complete quadrangle and the complete quadrilateral both form projective configurations; in the notation of projective configurations, the complete quadrangle is written as (4362) and the complete quadrilateral is written (6243), where the numbers in this notation refer to the numbers of points, lines per point, lines, and points per line of the configuration. The projective dual of a complete quadrangle is a complete quadrilateral, and vice versa. For any two complete quadrangles, or any two complete quadrilaterals, there is a unique projective transformation taking one of the two configurations into the other. [3]

Karl von Staudt reformed mathematical foundations in 1847 with the complete quadrangle when he noted that a "harmonic property" could be based on concomitants of the quadrangle: When each pair of opposite sides of the quadrangle intersect on a line, then the diagonals intersect the line at projective harmonic conjugate positions. The four points on the line deriving from the sides and diagonals of the quadrangle are called a harmonic range. Through perspectivity and projectivity, the harmonic property is stable. Developments of modern geometry and algebra note the influence of von Staudt on Mario Pieri and Felix Klein .

Euclidean properties

In the Euclidean plane, the four lines of a complete quadrilateral must not include any pairs of parallel lines, so that every pair of lines has a crossing point.

Wells (1991) describes several additional properties of complete quadrilaterals that involve metric properties of the Euclidean plane, rather than being purely projective. The midpoints of the diagonals are collinear, and (as proved by Isaac Newton) also collinear with the center of a conic that is tangent to all four lines of the quadrilateral. Any three of the lines of the quadrilateral form the sides of a triangle; the orthocenters of the four triangles formed in this way lie on a second line, perpendicular to the one through the midpoints. The circumcircles of these same four triangles meet in a point. In addition, the three circles having the diagonals as diameters belong to a common pencil of circles [4] the axis of which is the line through the orthocenters.

The polar circles of the triangles of a complete quadrilateral form a coaxal system. [5] :p. 179

See also

Notes

  1. Hartshorne 1967; Coxeter 1987 , p. 15.
  2. G. B. Halsted (1906) Synthetic Projective Geometry, page 14 via Internet Archive
  3. Coxeter 1987 , p. 51
  4. Wells writes incorrectly that the three circles meet in a pair of points, but, as can be seen in Alexander Bogomolny's animation of the same results, the pencil can be hyperbolic instead of elliptic, in which case the circles do not intersect.
  5. Johnson, Roger A., Advanced Euclidean Geometry, Dover Publications, 2007 (orig. 1960).

Related Research Articles

<span class="mw-page-title-main">Quadrilateral</span> Polygon with four sides and four corners

In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons. Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .

<span class="mw-page-title-main">Cyclic quadrilateral</span> Quadrilateral whose vertices can all fall on a single circle

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points to Euclidean points, and vice versa.

<span class="mw-page-title-main">Desargues's theorem</span> Two triangles are in perspective axially if and only if they are in perspective centrally

In projective geometry, Desargues's theorem, named after Girard Desargues, states:

<span class="mw-page-title-main">Fano plane</span> Geometry with 7 points and 7 lines

In finite geometry, the Fano plane is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is PG(2, 2). Here, PG stands for "projective geometry", the first parameter is the geometric dimension and the second parameter is the order.

<span class="mw-page-title-main">Midpoint</span> Point on a line segment which is equidistant from both endpoints

In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.

In projective geometry, duality or plane duality is a formalization of the striking symmetry of the roles played by points and lines in the definitions and theorems of projective planes. There are two approaches to the subject of duality, one through language and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a duality. Such a map can be constructed in many ways. The concept of plane duality readily extends to space duality and beyond that to duality in any finite-dimensional projective geometry.

<span class="mw-page-title-main">Sylvester–Gallai theorem</span> Existence of a line through two points

The Sylvester–Gallai theorem in geometry states that every finite set of points in the Euclidean plane has a line that passes through exactly two of the points or a line that passes through all of them. It is named after James Joseph Sylvester, who posed it as a problem in 1893, and Tibor Gallai, who published one of the first proofs of this theorem in 1944.

In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An incidence structure is what is obtained when all other concepts are removed and all that remains is the data about which points lie on which lines. Even with this severe limitation, theorems can be proved and interesting facts emerge concerning this structure. Such fundamental results remain valid when additional concepts are added to form a richer geometry. It sometimes happens that authors blur the distinction between a study and the objects of that study, so it is not surprising to find that some authors refer to incidence structures as incidence geometries.

<span class="mw-page-title-main">Concurrent lines</span> Lines which intersect at a single point

In geometry, lines in a plane or higher-dimensional space are concurrent if they intersect at a single point.

In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear. In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".

<span class="mw-page-title-main">Simson line</span> Line constructed from a triangle

In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. The line through these points is the Simson line of P, named for Robert Simson. The concept was first published, however, by William Wallace in 1799, and is sometimes called the Wallace line.

<span class="mw-page-title-main">G. B. Halsted</span> American mathematician

George Bruce Halsted, usually cited as G. B. Halsted, was an American mathematician who explored foundations of geometry and introduced non-Euclidean geometry into the United States through his translations of works by Bolyai, Lobachevski, Saccheri, and Poincaré. He wrote an elementary geometry text, Rational Geometry, based on Hilbert's axioms, which was translated into French, German, and Japanese. Halsted produced original works in synthetic geometry, first with an elementary text in 1896, and with a text on synthetic projective geometry in 1906.

<span class="mw-page-title-main">Configuration (geometry)</span> Points and lines with equal incidences

In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number of points.

<span class="mw-page-title-main">Desargues configuration</span> Geometric configuration of ten points and lines

In geometry, the Desargues configuration is a configuration of ten points and ten lines, with three points per line and three lines per point. It is named after Girard Desargues.

<span class="mw-page-title-main">Projective harmonic conjugate</span> Point found separated from another, given a point pair

In projective geometry, the harmonic conjugate point of a point on the real projective line with respect to two other points is defined by the following construction:

<span class="mw-page-title-main">Varignon's theorem</span> The midpoints of the sides of an arbitrary quadrilateral form a parallelogram

In Euclidean geometry, Varignon's theorem holds that the midpoints of the sides of an arbitrary quadrilateral form a parallelogram, called the Varignon parallelogram. It is named after Pierre Varignon, whose proof was published posthumously in 1731.

In Euclidean geometry, trilinear polarity is a certain correspondence between the points in the plane of a triangle not lying on the sides of the triangle and lines in the plane of the triangle not passing through the vertices of the triangle. "Although it is called a polarity, it is not really a polarity at all, for poles of concurrent lines are not collinear points." It was Jean-Victor Poncelet (1788–1867), a French engineer and mathematician, who introduced the idea of the trilinear polar of a point in 1865.

<span class="mw-page-title-main">Newton–Gauss line</span> Line joining midpoints of a complete quadrilaterals 3 diagonals

In geometry, the Newton–Gauss line is the line joining the midpoints of the three diagonals of a complete quadrilateral.

In Euclidean geometry, a harmonic quadrilateral, or harmonic quadrangle, is a quadrilateral that can be inscribed in a circle in which the products of the lengths of opposite sides are equal. It has several important properties.

References