Hesse configuration

Last updated
The Hesse configuration, with four of its lines (the four broken diagonals of the 3x3 array of points) drawn as curves Hesse configuration.svg
The Hesse configuration, with four of its lines (the four broken diagonals of the 3×3 array of points) drawn as curves

In geometry, the Hesse configuration is a configuration of 9 points and 12 lines with three points per line and four lines through each point. It can be realized in the complex projective plane as the set of inflection points of an elliptic curve, but it has no realization in the Euclidean plane. It was introduced by Colin Maclaurin and studied by Hesse  ( 1844 ), [1] and is also known as Young's geometry, [2] named after the later work of John Wesley Young on finite geometry. [3] [4]

Contents

Description

The Hesse configuration has the same incidence relations as the lines and points of the affine plane over the field of 3 elements. That is, the points of the Hesse configuration may be identified with ordered pairs of numbers modulo 3, and the lines of the configuration may correspondingly be identified with the triples of points (x, y) satisfying a linear equation ax + by = c (mod 3). Alternatively, the points of the configuration may be identified by the squares of a tic-tac-toe board, and the lines may be identified with the lines and broken diagonals of the board.

Each point belongs to four lines: in the tic tac toe interpretation of the configuration, one line is horizontal, one vertical, and two are diagonals or broken diagonals. Each line contains three points. In the language of configurations the Hesse configuration has the notation 94123, meaning that there are 9 points, 4 lines per point, 12 lines, and 3 points per line.

The Hesse configuration has 216 symmetries (its automorphism group has order 216). The group of its symmetries is known as the Hessian group.

Removing any one point and its four incident lines from the Hesse configuration produces another configuration of type 8383, the Möbius–Kantor configuration. [5] [6] [7]

In the Hesse configuration, the 12 lines may be grouped into four triples of parallel (non-intersecting) lines. Removing from the Hesse configuration the three lines belonging to a single triple produces a configuration of type 9393, the Pappus configuration. [6] [7]

The Hesse configuration may in turn be augmented by adding four points, one for each triple of non-intersecting lines, and one line containing the four new points, to form a configuration of type 134134, the set of points and lines of the projective plane over the three-element field.

Realizability

The Hesse configuration can be realized in the complex projective plane as the 9 inflection points of an elliptic curve and the 12 lines through triples of inflection points. [3] If a given set of nine points in the complex plane is the set of inflections of an elliptic curve C, it is also the set of inflections of every curve in a pencil of curves generated by C and by the Hessian curve of C, the Hesse pencil. [8]

The Hessian polyhedron is a representation of the Hesse configuration in the complex plane.

The Hesse configuration shares with the Möbius–Kantor configuration the property of having a complex realization but not being realizable by points and straight lines in the Euclidean plane. In the Hesse configuration, every two points are connected by a line of the configuration (the defining property of the Sylvester–Gallai configurations) and therefore every line through two of its points contains a third point. But in the Euclidean plane, every finite set of points is either collinear, or includes a pair of points whose line does not contain any other points of the set; this is the Sylvester–Gallai theorem. Because the Hesse configuration disobeys the Sylvester–Gallai theorem, it has no Euclidean realization. This example also shows that the Sylvester–Gallai theorem cannot be generalized to the complex projective plane. However, in complex spaces, the Hesse configuration and all Sylvester–Gallai configurations must lie within a two-dimensional flat subspace. [9]

Related Research Articles

<span class="mw-page-title-main">Projective plane</span> Geometric concept of a 2D space with a "point at infinity" adjoined

In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus any two distinct lines in a projective plane intersect at exactly one point.

In geometry, a secant is a line that intersects a curve at a minimum of two distinct points. The word secant comes from the Latin word secare, meaning to cut. In the case of a circle, a secant intersects the circle at exactly two points. A chord is the line segment determined by the two points, that is, the interval on the secant whose ends are the two points.

<span class="mw-page-title-main">Projective geometry</span> Type of geometry

In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points to Euclidean points, and vice-versa.

<span class="mw-page-title-main">Discrete geometry</span> Branch of geometry that studies combinatorial properties and constructive methods

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

<span class="mw-page-title-main">Fano plane</span> Geometry with 7 points and 7 lines

In finite geometry, the Fano plane is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is PG(2, 2). Here PG stands for "projective geometry", the first parameter is the geometric dimension and the second parameter is the order.

<span class="mw-page-title-main">Sylvester–Gallai theorem</span> Existence of a line through two points

The Sylvester–Gallai theorem in geometry states that every finite set of points in the Euclidean plane has a line that passes through exactly two of the points or a line that passes through all of them. It is named after James Joseph Sylvester, who posed it as a problem in 1893, and Tibor Gallai, who published one of the first proofs of this theorem in 1944.

<span class="mw-page-title-main">Incidence geometry</span>

In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An incidence structure is what is obtained when all other concepts are removed and all that remains is the data about which points lie on which lines. Even with this severe limitation, theorems can be proved and interesting facts emerge concerning this structure. Such fundamental results remain valid when additional concepts are added to form a richer geometry. It sometimes happens that authors blur the distinction between a study and the objects of that study, so it is not surprising to find that some authors refer to incidence structures as incidence geometries.

<span class="mw-page-title-main">Pappus configuration</span> Geometric configuration of 9 points and 9 lines

In geometry, the Pappus configuration is a configuration of nine points and nine lines in the Euclidean plane, with three points per line and three lines through each point.

<span class="mw-page-title-main">Complete quadrangle</span> Geometric figure made of 4 points connected by 6 lines

In mathematics, specifically in incidence geometry and especially in projective geometry, a complete quadrangle is a system of geometric objects consisting of any four points in a plane, no three of which are on a common line, and of the six lines connecting the six pairs of points. Dually, a complete quadrilateral is a system of four lines, no three of which pass through the same point, and the six points of intersection of these lines. The complete quadrangle was called a tetrastigm by Lachlan (1893), and the complete quadrilateral was called a tetragram; those terms are occasionally still used.

<span class="mw-page-title-main">Configuration (geometry)</span> Points and lines with equal incidences

In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number of points.

<span class="mw-page-title-main">Möbius–Kantor configuration</span> Geometric structure of 8 points and 8 lines

In geometry, the Möbius–Kantor configuration is a configuration consisting of eight points and eight lines, with three points on each line and three lines through each point. It is not possible to draw points and lines having this pattern of incidences in the Euclidean plane, but it is possible in the complex projective plane.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

In incidence geometry, the De Bruijn–Erdős theorem, originally published by Nicolaas Govert de Bruijn and Paul Erdős (1948), states a lower bound on the number of lines determined by n points in a projective plane. By duality, this is also a bound on the number of intersection points determined by a configuration of lines.

In mathematics, the syzygetic pencil or Hesse pencil, named for Otto Hesse, is a pencil of cubic plane elliptic curves in the complex projective plane, defined by the equation

In mathematics, the Hessian group is a finite group of order 216, introduced by Jordan (1877) who named it for Otto Hesse. It may be represented as the group of affine transformations with determinant 1 of the affine plane over the field of 3 elements. It has a normal subgroup that is an elementary abelian group of order 32, and the quotient by this subgroup is isomorphic to the group SL2(3) of order 24. It also acts on the Hesse pencil of elliptic curves, and forms the automorphism group of the Hesse configuration of the 9 inflection points of these curves and the 12 lines through triples of these points.

<span class="mw-page-title-main">Perles configuration</span> Irrational system of points and lines

In geometry, the Perles configuration is a system of nine points and nine lines in the Euclidean plane for which every combinatorially equivalent realization has at least one irrational number as one of its coordinates. It can be constructed from the diagonals and symmetry lines of a regular pentagon, omitting one of the symmetry lines. In turn, it can be used to construct higher-dimensional convex polytopes that cannot be given rational coordinates, having the fewest vertices of any known example. All of the realizations of the Perles configuration in the projective plane are equivalent to each other under projective transformations.

In geometry, a Sylvester–Gallai configuration consists of a finite subset of the points of a projective space with the property that the line through any two of the points in the subset also passes through at least one other point of the subset.

The terminology of algebraic geometry changed drastically during the twentieth century, with the introduction of the general methods, initiated by David Hilbert and the Italian school of algebraic geometry in the beginning of the century, and later formalized by André Weil, Jean-Pierre Serre and Alexander Grothendieck. Much of the classical terminology, mainly based on case study, was simply abandoned, with the result that books and papers written before this time can be hard to read. This article lists some of this classical terminology, and describes some of the changes in conventions.

In matroid theory, a Sylvester matroid is a matroid in which every pair of elements belongs to a three-element circuit of the matroid.

<span class="mw-page-title-main">Grünbaum–Rigby configuration</span>

In geometry, the Grünbaum–Rigby configuration is a symmetric configuration consisting of 21 points and 21 lines, with four points on each line and four lines through each point. Originally studied by Felix Klein in the complex projective plane in connection with the Klein quartic, it was first realized in the Euclidean plane by Branko Grünbaum and John F. Rigby.

References

  1. Hesse, O. (1844), "Über die Elimination der Variabeln aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variabeln" (PDF), Journal für die Reine und Angewandte Mathematik (in German), 28: 68–96, doi:10.1515/crll.1844.28.68, ISSN   0075-4102 .
  2. Wallace, Edward C.; West, Stephen F. (2015), Roads to Geometry (3rd ed.), Waveland Press, pp. 23–24, ISBN   9781478632047
  3. 1 2 MacNeish, H. F. (1942), "Four finite geometries", The American Mathematical Monthly , 49: 15–23, doi:10.2307/2303772, MR   0005625
  4. Veblen, Oswald; Young, John Wesley (1910), Projective Geometry, vol. I, Ginn and Company, p. 249
  5. Dolgachev, Igor V. (2004), "Abstract configurations in algebraic geometry", The Fano Conference, Univ. Torino, Turin, pp. 423–462, arXiv: math.AG/0304258 , MR   2112585 .
  6. 1 2 Coxeter, H. S. M. (1950), "Self-dual configurations and regular graphs", Bulletin of the American Mathematical Society , 56 (5): 413–455, doi: 10.1090/S0002-9904-1950-09407-5 .
  7. 1 2 Cullinane, Steven H. (2011), Configurations and squares .
  8. Artebani, Michela; Dolgachev, Igor (2009), "The Hesse pencil of plane cubic curves", L'Enseignement Mathématique, 2e Série, 55 (3): 235–273, arXiv: math/0611590 , doi:10.4171/lem/55-3-3, MR   2583779 .
  9. Elkies, Noam; Pretorius, Lou M.; Swanepoel, Konrad J. (2006), "Sylvester–Gallai theorems for complex numbers and quaternions", Discrete and Computational Geometry , 35 (3): 361–373, arXiv: math/0403023 , doi:10.1007/s00454-005-1226-7, MR   2202107 .