Great deltoidal icositetrahedron

Last updated
Great deltoidal icositetrahedron
DU17 great strombic icositetrahedron.png
Type Star polyhedron
Face DU17 facets.png
Elements F = 24, E = 48
V = 26 (χ = 2)
Symmetry group Oh, [4,3], *432
Index references DU 17
dual polyhedron Nonconvex great rhombicuboctahedron

In geometry, the great deltoidal icositetrahedron (or great sagittal disdodecahedron) is the dual of the nonconvex great rhombicuboctahedron. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models.

Contents

One of its halves can be rotated by 45 degrees to form the pseudo great deltoidal icositetrahedron, analogous to the pseudo-deltoidal icositetrahedron.

Proportions

Faces have three angles of and one of . Its dihedral angles equal . The ratio between the lengths of the long edges and the short ones equals .

Related Research Articles

<span class="mw-page-title-main">Triakis octahedron</span> Catalan solid with 24 faces

In geometry, a triakis octahedron is an Archimedean dual solid, or a Catalan solid. Its dual is the truncated cube.

<span class="mw-page-title-main">Deltoidal icositetrahedron</span> Catalan solid with 24 kite faces

In geometry, the deltoidal icositetrahedron is a Catalan solid. Its 24 faces are congruent kites. The deltoidal icositetrahedron, whose dual is the (uniform) rhombicuboctahedron, is tightly related to the pseudo-deltoidal icositetrahedron, whose dual is the pseudorhombicuboctahedron; but the actual and pseudo-d.i. are not to be confused with each other.

<span class="mw-page-title-main">Pentagonal icositetrahedron</span>

In geometry, a pentagonal icositetrahedron or pentagonal icosikaitetrahedron is a Catalan solid which is the dual of the snub cube. In crystallography it is also called a gyroid.

<span class="mw-page-title-main">Small dodecicosidodecahedron</span> Polyhedron with 44 faces

In geometry, the small dodecicosidodecahedron (or small dodekicosidodecahedron) is a nonconvex uniform polyhedron, indexed as U33. It has 44 faces (20 triangles, 12 pentagons, and 12 decagons), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Cubitruncated cuboctahedron</span> Polyhedron with 20 faces

In geometry, the cubitruncated cuboctahedron or cuboctatruncated cuboctahedron is a nonconvex uniform polyhedron, indexed as U16. It has 20 faces (8 hexagons, 6 octagons, and 6 octagrams), 72 edges, and 48 vertices,and has a shäfli symbol of tr{4,3/2}

<span class="mw-page-title-main">Great truncated icosidodecahedron</span> Polyhedron with 62 faces

In geometry, the great truncated icosidodecahedron (or great quasitruncated icosidodecahedron or stellatruncated icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U68. It has 62 faces (30 squares, 20 hexagons, and 12 decagrams), 180 edges, and 120 vertices. It is given a Schläfli symbol t0,1,2{53,3}, and Coxeter-Dynkin diagram, .

<span class="mw-page-title-main">Great dodecicosacron</span> Polyhedron with 60 faces

In geometry, the great dodecicosacron (or great dipteral trisicosahedron) is the dual of the great dodecicosahedron (U63). It has 60 intersecting bow-tie-shaped faces.

<span class="mw-page-title-main">Great hexacronic icositetrahedron</span> Polyhedron with 24 faces

In geometry, the great hexacronic icositetrahedron is the dual of the great cubicuboctahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Small rhombihexacron</span> Polyhedron with 24 faces

In geometry, the small rhombihexacron is the dual of the small rhombihexahedron. It is visually identical to the small hexacronic icositetrahedron. Its faces are antiparallelograms formed by pairs of coplanar triangles.

<span class="mw-page-title-main">Small hexacronic icositetrahedron</span> Polyhedron with 24 faces

In geometry, the small hexacronic icositetrahedron is the dual of the small cubicuboctahedron. It is visually identical to the small rhombihexacron. A part of each dart lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Small rhombidodecacron</span>

In geometry, the small rhombidodecacron is a nonconvex isohedral polyhedron. It is the dual of the small rhombidodecahedron. It is visually identical to the Small dodecacronic hexecontahedron. It has 60 intersecting antiparallelogram faces.

<span class="mw-page-title-main">Great icosacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the great icosacronic hexecontahedron is the dual of the great icosicosidodecahedron. Its faces are darts. A part of each dart lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Great triakis octahedron</span> Polyhedron with 24 faces

In geometry, the great triakis octahedron is the dual of the stellated truncated hexahedron (U19). It has 24 intersecting isosceles triangle faces. Part of each triangle lies within the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Great rhombihexacron</span> Polyhedron with 24 faces

In geometry, the great rhombihexacron (or great dipteral disdodecahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform great rhombihexahedron (U21). It has 24 identical bow-tie-shaped faces, 18 vertices, and 48 edges.

<span class="mw-page-title-main">Medial deltoidal hexecontahedron</span> Polyhedron with 60 faces

In geometry, the medial deltoidal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the rhombidodecadodecahedron. Its 60 intersecting quadrilateral faces are kites.

<span class="mw-page-title-main">Great deltoidal hexecontahedron</span>

In geometry, the great deltoidal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the nonconvex great rhombicosidodecahedron. It is visually identical to the great rhombidodecacron. It has 60 intersecting cross quadrilateral faces, 120 edges, and 62 vertices. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Great rhombidodecacron</span> Polyhedron with 60 faces

In geometry, the great rhombidodecacron is a nonconvex isohedral polyhedron. It is the dual of the great rhombidodecahedron. It is visually identical to the great deltoidal hexecontahedron. Its faces are antiparallelograms.

<span class="mw-page-title-main">Great disdyakis dodecahedron</span> Polyhedron with 48 faces

In geometry, the great disdyakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great truncated cuboctahedron. It has 48 triangular faces.

<span class="mw-page-title-main">Great ditrigonal dodecacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the great ditrigonal dodecacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great ditrigonal dodecicosidodecahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Small ditrigonal dodecacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the small ditrigonal dodecacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small ditrigonal dodecicosidodecahedron. It is visually identical to the small dodecicosacron. Its faces are darts. A part of each dart lies inside the solid, hence is invisible in solid models.

References

Weisstein, Eric W. "Great Deltoidal Icositetrahedron". MathWorld .