Small hexacronic icositetrahedron

Last updated
Small hexacronic icositetrahedron
DU13 small hexacronic icositetrahedron.png
Type Star polyhedron
Face DU13 facets.png
Elements F = 24, E = 48
V = 20 (χ = 4)
Symmetry group Oh, [4,3], *432
Index references DU 13
dual polyhedron Small cubicuboctahedron
3D model of a small hexacronic icositetrahedron Small hexacronic icositetrahedron.stl
3D model of a small hexacronic icositetrahedron

In geometry, the small hexacronic icositetrahedron is the dual of the small cubicuboctahedron. It is visually identical to the small rhombihexacron. A part of each dart lies inside the solid, hence is invisible in solid models.

Contents

Proportions

Its faces are darts, having two angles of , one of and one of . Its dihedral angles equal . The ratio between the lengths of the long edges and the short ones equals .

Related Research Articles

<span class="mw-page-title-main">Deltoidal icositetrahedron</span> Catalan solid with 24 kite faces

In geometry, the deltoidal icositetrahedron is a Catalan solid. Its 24 faces are congruent kites. The deltoidal icositetrahedron, whose dual is the (uniform) rhombicuboctahedron, is tightly related to the pseudo-deltoidal icositetrahedron, whose dual is the pseudorhombicuboctahedron; but the actual and pseudo-d.i. are not to be confused with each other.

<span class="mw-page-title-main">Pentagonal icositetrahedron</span>

In geometry, a pentagonal icositetrahedron or pentagonal icosikaitetrahedron is a Catalan solid which is the dual of the snub cube. In crystallography it is also called a gyroid.

<span class="mw-page-title-main">Small dodecicosidodecahedron</span> Polyhedron with 44 faces

In geometry, the small dodecicosidodecahedron (or small dodekicosidodecahedron) is a nonconvex uniform polyhedron, indexed as U33. It has 44 faces (20 triangles, 12 pentagons, and 12 decagons), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Cubitruncated cuboctahedron</span> Polyhedron with 20 faces

In geometry, the cubitruncated cuboctahedron or cuboctatruncated cuboctahedron is a nonconvex uniform polyhedron, indexed as U16. It has 20 faces (8 hexagons, 6 octagons, and 6 octagrams), 72 edges, and 48 vertices,and has a shäfli symbol of tr{4,3/2}

<span class="mw-page-title-main">Great dodecicosacron</span> Polyhedron with 60 faces

In geometry, the great dodecicosacron (or great dipteral trisicosahedron) is the dual of the great dodecicosahedron (U63). It has 60 intersecting bow-tie-shaped faces.

<span class="mw-page-title-main">Great rhombic triacontahedron</span> Polyhedron with 30 faces

In geometry, the great rhombic triacontahedron is a nonconvex isohedral, isotoxal polyhedron. It is the dual of the great icosidodecahedron (U54). Like the convex rhombic triacontahedron it has 30 rhombic faces, 60 edges and 32 vertices.

<span class="mw-page-title-main">Great hexacronic icositetrahedron</span> Polyhedron with 24 faces

In geometry, the great hexacronic icositetrahedron is the dual of the great cubicuboctahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Great deltoidal icositetrahedron</span> Polyhedron with 24 faces

In geometry, the great deltoidal icositetrahedron is the dual of the nonconvex great rhombicuboctahedron. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Small rhombihexacron</span> Polyhedron with 24 faces

In geometry, the small rhombihexacron is the dual of the small rhombihexahedron. It is visually identical to the small hexacronic icositetrahedron. Its faces are antiparallelograms formed by pairs of coplanar triangles.

<span class="mw-page-title-main">Small dodecicosacron</span> Polyhedron with 60 faces

In geometry, the small dodecicosacron is the dual of the small dodecicosahedron (U50). It is visually identical to the Small ditrigonal dodecacronic hexecontahedron. It has 60 intersecting bow-tie-shaped faces.

<span class="mw-page-title-main">Small rhombidodecacron</span>

In geometry, the small rhombidodecacron is a nonconvex isohedral polyhedron. It is the dual of the small rhombidodecahedron. It is visually identical to the Small dodecacronic hexecontahedron. It has 60 intersecting antiparallelogram faces.

<span class="mw-page-title-main">Rhombicosacron</span> Polyhedron with 60 faces

In geometry, the rhombicosacron is a nonconvex isohedral polyhedron. It is the dual of the uniform rhombicosahedron, U56. It has 50 vertices, 120 edges, and 60 crossed-quadrilateral faces.

<span class="mw-page-title-main">Great triakis octahedron</span> Polyhedron with 24 faces

In geometry, the great triakis octahedron is the dual of the stellated truncated hexahedron (U19). It has 24 intersecting isosceles triangle faces. Part of each triangle lies within the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Medial deltoidal hexecontahedron</span> Polyhedron with 60 faces

In geometry, the medial deltoidal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the rhombidodecadodecahedron. Its 60 intersecting quadrilateral faces are kites.

<span class="mw-page-title-main">Small hexagrammic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the small hexagrammic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the small retrosnub icosicosidodecahedron. It is partially degenerate, having coincident vertices, as its dual has coplanar triangular faces.

<span class="mw-page-title-main">Small icosacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the small icosacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small icosicosidodecahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Small hexagonal hexecontahedron</span> Polyhedron with 60 faces

In geometry, the small hexagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small snub icosicosidodecahedron. It is partially degenerate, having coincident vertices, as its dual has coplanar triangular faces.

<span class="mw-page-title-main">Great ditrigonal dodecacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the great ditrigonal dodecacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great ditrigonal dodecicosidodecahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Small ditrigonal dodecacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the small ditrigonal dodecacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small ditrigonal dodecicosidodecahedron. It is visually identical to the small dodecicosacron. Its faces are darts. A part of each dart lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Medial icosacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the medial icosacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform icosidodecadodecahedron. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models.

References