Great hexacronic icositetrahedron

Last updated
Great hexacronic icositetrahedron
DU14 great hexacronic icositetrahedron.png
Type Star polyhedron
Face DU14 facets.png
Elements F = 24, E = 48
V = 20 (χ = 4)
Symmetry group Oh, [4,3], *432
Index references DU 14
dual polyhedron Great cubicuboctahedron

In geometry, the great hexacronic icositetrahedron is the dual of the great cubicuboctahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

Contents

Proportions

The kites have two angles of , one of and one of . The dihedral angle equals . The ratio between the lengths of the long and short edges is .

Related Research Articles

<span class="mw-page-title-main">Triakis octahedron</span> Catalan solid with 24 faces

In geometry, a triakis octahedron is an Archimedean dual solid, or a Catalan solid. Its dual is the truncated cube.

<span class="mw-page-title-main">Deltoidal icositetrahedron</span> Catalan solid with 24 kite faces

In geometry, the deltoidal icositetrahedron is a Catalan solid. Its 24 faces are congruent kites. The deltoidal icositetrahedron, whose dual is the (uniform) rhombicuboctahedron, is tightly related to the pseudo-deltoidal icositetrahedron, whose dual is the pseudorhombicuboctahedron; but the actual and pseudo-d.i. are not to be confused with each other.

<span class="mw-page-title-main">Pentagonal icositetrahedron</span>

In geometry, a pentagonal icositetrahedron or pentagonal icosikaitetrahedron is a Catalan solid which is the dual of the snub cube. In crystallography it is also called a gyroid.

<span class="mw-page-title-main">Great deltoidal icositetrahedron</span> Polyhedron with 24 faces

In geometry, the great deltoidal icositetrahedron is the dual of the nonconvex great rhombicuboctahedron. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Small rhombihexacron</span> Polyhedron with 24 faces

In geometry, the small rhombihexacron is the dual of the small rhombihexahedron. It is visually identical to the small hexacronic icositetrahedron. Its faces are antiparallelograms formed by pairs of coplanar triangles.

<span class="mw-page-title-main">Small hexacronic icositetrahedron</span> Polyhedron with 24 faces

In geometry, the small hexacronic icositetrahedron is the dual of the small cubicuboctahedron. It is visually identical to the small rhombihexacron. A part of each dart lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Small rhombidodecacron</span>

In geometry, the small rhombidodecacron is a nonconvex isohedral polyhedron. It is the dual of the small rhombidodecahedron. It is visually identical to the Small dodecacronic hexecontahedron. It has 60 intersecting antiparallelogram faces.

<span class="mw-page-title-main">Great triakis octahedron</span> Polyhedron with 24 faces

In geometry, the great triakis octahedron is the dual of the stellated truncated hexahedron (U19). It has 24 intersecting isosceles triangle faces. Part of each triangle lies within the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Great rhombihexacron</span> Polyhedron with 24 faces

In geometry, the great rhombihexacron (or great dipteral disdodecahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform great rhombihexahedron (U21). It has 24 identical bow-tie-shaped faces, 18 vertices, and 48 edges.

<span class="mw-page-title-main">Small stellapentakis dodecahedron</span> Polyhedron with 60 faces

In geometry, the small stellapentakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the truncated great dodecahedron. It has 60 intersecting triangular faces.

<span class="mw-page-title-main">Medial deltoidal hexecontahedron</span> Polyhedron with 60 faces

In geometry, the medial deltoidal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the rhombidodecadodecahedron. Its 60 intersecting quadrilateral faces are kites.

<span class="mw-page-title-main">Great deltoidal hexecontahedron</span>

In geometry, the great deltoidal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the nonconvex great rhombicosidodecahedron. It is visually identical to the great rhombidodecacron. It has 60 intersecting cross quadrilateral faces, 120 edges, and 62 vertices. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Small hexagrammic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the small hexagrammic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the small retrosnub icosicosidodecahedron. It is partially degenerate, having coincident vertices, as its dual has coplanar triangular faces.

<span class="mw-page-title-main">Great triakis icosahedron</span> Polyhedron with 60 faces

In geometry, the great triakis icosahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great stellated truncated dodecahedron. Its faces are isosceles triangles. Part of each triangle lies within the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Great disdyakis dodecahedron</span> Polyhedron with 48 faces

In geometry, the great disdyakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great truncated cuboctahedron. It has 48 triangular faces.

<span class="mw-page-title-main">Small icosacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the small icosacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small icosicosidodecahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Small hexagonal hexecontahedron</span> Polyhedron with 60 faces

In geometry, the small hexagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small snub icosicosidodecahedron. It is partially degenerate, having coincident vertices, as its dual has coplanar triangular faces.

<span class="mw-page-title-main">Great ditrigonal dodecacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the great ditrigonal dodecacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great ditrigonal dodecicosidodecahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Medial disdyakis triacontahedron</span> Polyhedron with 120 faces

In geometry, the medial disdyakis triacontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform truncated dodecadodecahedron. It has 120 triangular faces.

<span class="mw-page-title-main">Great dodecacronic hexecontahedron</span> Polyhedron with 60 faces

In geometry, the great dodecacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great dodecicosidodecahedron. Its 60 intersecting quadrilateral faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

References