Polyhedral group

Last updated
Selected point groups in three dimensions
Sphere symmetry group cs.png
Involutional symmetry
Cs, (*)
[ ] = CDel node c2.png
Sphere symmetry group c3v.png
Cyclic symmetry
Cnv, (*nn)
[n] = CDel node c1.pngCDel n.pngCDel node c1.png
Sphere symmetry group d3h.png
Dihedral symmetry
Dnh, (*n22)
[n,2] = CDel node c1.pngCDel n.pngCDel node c1.pngCDel 2.pngCDel node c1.png
Polyhedral group, [n,3], (*n32)
Sphere symmetry group td.png
Tetrahedral symmetry
Td, (*332)
[3,3] = CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png
Sphere symmetry group oh.png
Octahedral symmetry
Oh, (*432)
[4,3] = CDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.png
Sphere symmetry group ih.png
Icosahedral symmetry
Ih, (*532)
[5,3] = CDel node c2.pngCDel 5.pngCDel node c2.pngCDel 3.pngCDel node c2.png

In geometry, the polyhedral group is any of the symmetry groups of the Platonic solids.

Contents

Groups

There are three polyhedral groups:

These symmetries double to 24, 48, 120 respectively for the full reflectional groups. The reflection symmetries have 6, 9, and 15 mirrors respectively. The octahedral symmetry, [4,3] can be seen as the union of 6 tetrahedral symmetry [3,3] mirrors, and 3 mirrors of dihedral symmetry Dih2, [2,2]. Pyritohedral symmetry is another doubling of tetrahedral symmetry.

The conjugacy classes of full tetrahedral symmetry, TdS4 , are:

The conjugacy classes of pyritohedral symmetry, Th, include those of T, with the two classes of 4 combined, and each with inversion:

The conjugacy classes of the full octahedral group, OhS4 × C2 , are:

The conjugacy classes of full icosahedral symmetry, IhA5 × C2 , include also each with inversion:

Chiral polyhedral groups

Chiral polyhedral groups
Name
(Orb.)
Coxeter
notation
Order Abstract
structure
Rotation
points
# valence
Diagrams
OrthogonalStereographic
T
(332)
CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png
[3,3]+
12 A4 43 Armed forces red triangle.svg Purple Fire.svg
32 Rhomb.svg
Sphere symmetry group t.png Tetrakis hexahedron stereographic D4 gyrations.png Tetrakis hexahedron stereographic D3 gyrations.png Tetrakis hexahedron stereographic D2 gyrations.png
Th
(3*2)
CDel node.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png
CDel node c2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png
[4,3+]
24 A4 × C2 43 Armed forces red triangle.svg
3*2CDel node c2.png
Sphere symmetry group th.png Disdyakis dodecahedron stereographic D4 pyritohedral.png Disdyakis dodecahedron stereographic D3 pyritohedral.png Disdyakis dodecahedron stereographic D2 pyritohedral.png
O
(432)
CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png
[4,3]+
24 S4 34 Monomino.png
43 Armed forces red triangle.svg
62 Rhomb.svg
Sphere symmetry group o.png Disdyakis dodecahedron stereographic D4 gyrations.png Disdyakis dodecahedron stereographic D3 gyrations.png Disdyakis dodecahedron stereographic D2 gyrations.png
I
(532)
CDel node h2.pngCDel 5.pngCDel node h2.pngCDel 3.pngCDel node h2.png
[5,3]+
60 A5 65 Patka piechota.png
103 Armed forces red triangle.svg
152 Rhomb.svg
Sphere symmetry group i.png Disdyakis triacontahedron stereographic d5 gyrations.png Disdyakis triacontahedron stereographic d3 gyrations.png Disdyakis triacontahedron stereographic d2 gyrations.png

Full polyhedral groups

Full polyhedral groups
Weyl
Schoe.
(Orb.)
Coxeter
notation
Order Abstract
structure
Coxeter
number

(h)
Mirrors
(m)
Mirror diagrams
OrthogonalStereographic
A3
Td
(*332)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png
[3,3]
24 S4 46CDel node c1.png Spherical tetrakis hexahedron.svg Tetrakis hexahedron stereographic D4.png Tetrakis hexahedron stereographic D3.png Tetrakis hexahedron stereographic D2.png
B3
Oh
(*432)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.png
[4,3]
48S4 × C28node_c2}
>6CDel node c1.png
Spherical disdyakis dodecahedron.svg Disdyakis dodecahedron stereographic D4.png Disdyakis dodecahedron stereographic D3.png Disdyakis dodecahedron stereographic D2.png
H3
Ih
(*532)
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
CDel node c1.pngCDel 5.pngCDel node c1.pngCDel 3.pngCDel node c1.png
[5,3]
120 A5 × C21015CDel node c1.png Spherical disdyakis triacontahedron.svg Disdyakis triacontahedron stereographic d5.svg Disdyakis triacontahedron stereographic d3.svg Disdyakis triacontahedron stereographic d2.svg

See also

Related Research Articles

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Alternating group</span> Group of even permutations of a finite set

In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of n elements is called the alternating group of degree n, or the alternating group on n letters and denoted by An or Alt(n).

<span class="mw-page-title-main">Dihedral group</span> Group of symmetries of a regular polygon

In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry.

In geometry, an improper rotation is an isometry in Euclidean space that is a combination of a rotation about an axis and a reflection in a plane perpendicular to that axis. Reflection and inversion are each special case of improper rotation. Any improper rotation is an affine transformation and, in cases that keep the coordinate origin fixed, a linear transformation. It is used as a symmetry operation in the context of geometric symmetry, molecular symmetry and crystallography, where an object that is unchanged by a combination of rotation and reflection is said to have improper rotation symmetry.

<span class="mw-page-title-main">Truncated cuboctahedron</span> Archimedean solid in geometry

In geometry, the truncated cuboctahedron or great rhombicuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry, the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.

<span class="mw-page-title-main">Klein quartic</span> Compact Riemann surface of genus 3

In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus 3 with the highest possible order automorphism group for this genus, namely order 168 orientation-preserving automorphisms, and 168 × 2 = 336 automorphisms if orientation may be reversed. As such, the Klein quartic is the Hurwitz surface of lowest possible genus; see Hurwitz's automorphisms theorem. Its (orientation-preserving) automorphism group is isomorphic to PSL(2, 7), the second-smallest non-abelian simple group after the alternating group A5. The quartic was first described in (Klein 1878b).

<span class="mw-page-title-main">600-cell</span> Four-dimensional analog of the icosahedron

In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,3,5}. It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from "tetrahedral complex") and a polytetrahedron, being bounded by tetrahedral cells.

<span class="mw-page-title-main">ADE classification</span>

In mathematics, the ADE classification is a situation where certain kinds of objects are in correspondence with simply laced Dynkin diagrams. The question of giving a common origin to these classifications, rather than a posteriori verification of a parallelism, was posed in. The complete list of simply laced Dynkin diagrams comprises

<span class="mw-page-title-main">Rotational symmetry</span> Property of objects which appear unchanged after a partial rotation

Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation.

In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries.

<span class="mw-page-title-main">Icosahedral symmetry</span> 3D symmetry group

In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron and the rhombic triacontahedron.

<span class="mw-page-title-main">Octahedral symmetry</span> 3D symmetry group

A regular octahedron has 24 rotational symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedron that is dual to an octahedron.

<span class="mw-page-title-main">Tetrahedral symmetry</span> 3D symmetry group

A regular tetrahedron has 12 rotational symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation.

In mathematics, the binary icosahedral group 2I or ⟨2,3,5⟩ is a certain nonabelian group of order 120. It is an extension of the icosahedral group I or (2,3,5) of order 60 by the cyclic group of order 2, and is the preimage of the icosahedral group under the 2:1 covering homomorphism

In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 13 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations. Each symmetry operation is performed with respect to some symmetry element.

<span class="mw-page-title-main">Binary tetrahedral group</span>

In mathematics, the binary tetrahedral group, denoted 2T or ⟨2,3,3⟩, is a certain nonabelian group of order 24. It is an extension of the tetrahedral group T or (2,3,3) of order 12 by a cyclic group of order 2, and is the preimage of the tetrahedral group under the 2:1 covering homomorphism Spin(3) → SO(3) of the special orthogonal group by the spin group. It follows that the binary tetrahedral group is a discrete subgroup of Spin(3) of order 24. The complex reflection group named 3(24)3 by G.C. Shephard or 3[3]3 and by Coxeter, is isomorphic to the binary tetrahedral group.

In 4-dimensional geometry, a truncated octahedral prism or omnitruncated tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 16 cells It has 64 faces, and 96 edges and 48 vertices.

<span class="mw-page-title-main">Coxeter notation</span> Classification system for symmetry groups in geometry

In geometry, Coxeter notation is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson.

<span class="mw-page-title-main">Point groups in four dimensions</span>

In geometry, a point group in four dimensions is an isometry group in four dimensions that leaves the origin fixed, or correspondingly, an isometry group of a 3-sphere.

References