Prime knot

Last updated
Simplest prime link Hopf Link.png
Simplest prime link

In knot theory, a prime knot or prime link is a knot that is, in a certain sense, indecomposable. Specifically, it is a non-trivial knot which cannot be written as the knot sum of two non-trivial knots. Knots that are not prime are said to be composite knots or composite links. It can be a nontrivial problem to determine whether a given knot is prime or not.

Contents

A family of examples of prime knots are the torus knots. These are formed by wrapping a circle around a torus p times in one direction and q times in the other, where p and q are coprime integers.

Knots are characterized by their crossing numbers. The simplest prime knot is the trefoil with three crossings. The trefoil is actually a (2, 3)-torus knot. The figure-eight knot, with four crossings, is the simplest non-torus knot. For any positive integer n, there are a finite number of prime knots with n crossings. The first few values (sequence A002863 in the OEIS ) are given in the following table.

n12345678910111213141516
Number of prime knots
with n crossings
0011237214916555221769988469722532931388705
Composite knots00000214............
Total 001125825............

Enantiomorphs are counted only once in this table and the following chart (i.e. a knot and its mirror image are considered equivalent).

A chart of all prime knots with seven or fewer crossings, not including mirror-images, plus the unknot (which is not considered prime). Knot table.svg
A chart of all prime knots with seven or fewer crossings, not including mirror-images, plus the unknot (which is not considered prime).

Schubert's theorem

A theorem due to Horst Schubert states that every knot can be uniquely expressed as a connected sum of prime knots. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Knot theory</span> Study of mathematical knots

In the mathematical field of topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing through itself.

<span class="mw-page-title-main">Knot (mathematics)</span> Embedding of the circle in three dimensional Euclidean space

In mathematics, a knot is an embedding of the circle S1 into three-dimensional Euclidean space, R3. Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of R3 which takes one knot to the other.

<span class="mw-page-title-main">Trefoil knot</span> Simplest non-trivial closed knot with three crossings

In knot theory, a branch of mathematics, the trefoil knot is the simplest example of a nontrivial knot. The trefoil can be obtained by joining together the two loose ends of a common overhand knot, resulting in a knotted loop. As the simplest knot, the trefoil is fundamental to the study of mathematical knot theory.

In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a version of this polynomial, now called the Alexander–Conway polynomial, could be computed using a skein relation, although its significance was not realized until the discovery of the Jones polynomial in 1984. Soon after Conway's reworking of the Alexander polynomial, it was realized that a similar skein relation was exhibited in Alexander's paper on his polynomial.

<span class="mw-page-title-main">Torus knot</span> Knot which lies on the surface of a torus in 3-dimensional space

In knot theory, a torus knot is a special kind of knot that lies on the surface of an unknotted torus in R3. Similarly, a torus link is a link which lies on the surface of a torus in the same way. Each torus knot is specified by a pair of coprime integers p and q. A torus link arises if p and q are not coprime. A torus knot is trivial if and only if either p or q is equal to 1 or −1. The simplest nontrivial example is the (2,3)-torus knot, also known as the trefoil knot.

<span class="mw-page-title-main">Seifert surface</span> Orientable surface whose boundary is a knot or link

In mathematics, a Seifert surface is an orientable surface whose boundary is a given knot or link.

<span class="mw-page-title-main">Slice knot</span>

A slice knot is a mathematical knot in 3-dimensional space that bounds an embedded disk in 4-dimensional space.

In the mathematical field of knot theory, a chiral knot is a knot that is not equivalent to its mirror image. An oriented knot that is equivalent to its mirror image is an amphicheiral knot, also called an achiral knot. The chirality of a knot is a knot invariant. A knot's chirality can be further classified depending on whether or not it is invertible.

In the mathematical field of knot theory, Fox n-coloring is a method of specifying a representation of a knot group or a group of a link onto the dihedral group of order n where n is an odd integer by coloring arcs in a link diagram. Ralph Fox discovered this method "in an effort to make the subject accessible to everyone" when he was explaining knot theory to undergraduate students at Haverford College in 1956. Fox n-coloring is an example of a conjugation quandle.

<span class="mw-page-title-main">Satellite knot</span> Type of mathematical knot

In the mathematical theory of knots, a satellite knot is a knot that contains an incompressible, non boundary-parallel torus in its complement. Every knot is either hyperbolic, a torus, or a satellite knot. The class of satellite knots include composite knots, cable knots, and Whitehead doubles. A satellite link is one that orbits a companion knot K in the sense that it lies inside a regular neighborhood of the companion.

<span class="mw-page-title-main">Lissajous knot</span> Knot defined by parametric equations defining Lissajous curves

In knot theory, a Lissajous knot is a knot defined by parametric equations of the form

<span class="mw-page-title-main">Stick number</span> Smallest number of edges of an equivalent polygonal path for a knot

In the mathematical theory of knots, the stick number is a knot invariant that intuitively gives the smallest number of straight "sticks" stuck end to end needed to form a knot. Specifically, given any knot , the stick number of , denoted by , is the smallest number of edges of a polygonal path equivalent to .

In mathematics, especially in the area of topology known as knot theory, an invertible knot is a knot that can be continuously deformed to itself, but with its orientation reversed. A non-invertible knot is any knot which does not have this property. The invertibility of a knot is a knot invariant. An invertible link is the link equivalent of an invertible knot.

<span class="mw-page-title-main">Crossing number (knot theory)</span> Integer-valued knot invariant; least number of crossings in a knot diagram

In the mathematical area of knot theory, the crossing number of a knot is the smallest number of crossings of any diagram of the knot. It is a knot invariant.

<span class="mw-page-title-main">Square knot (mathematics)</span> Connected sum of two trefoil knots with opposite chirality

In knot theory, the square knot is a composite knot obtained by taking the connected sum of a trefoil knot with its reflection. It is closely related to the granny knot, which is also a connected sum of two trefoils. Because the trefoil knot is the simplest nontrivial knot, the square knot and the granny knot are the simplest of all composite knots.

<span class="mw-page-title-main">Granny knot (mathematics)</span> Connected sum of two trefoil knots with same chirality

In knot theory, the granny knot is a composite knot obtained by taking the connected sum of two identical trefoil knots. It is closely related to the square knot, which can also be described as a connected sum of two trefoils. Because the trefoil knot is the simplest nontrivial knot, the granny knot and the square knot are the simplest of all composite knots.

<span class="mw-page-title-main">Twist knot</span> Family of mathematical knots

In knot theory, a branch of mathematics, a twist knot is a knot obtained by repeatedly twisting a closed loop and then linking the ends together. The twist knots are an infinite family of knots, and are considered the simplest type of knots after the torus knots.

<span class="mw-page-title-main">Unknotting number</span> Minimum number of times a specific knot must be passed through itself to become untied

In the mathematical area of knot theory, the unknotting number of a knot is the minimum number of times the knot must be passed through itself to untie it. If a knot has unknotting number , then there exists a diagram of the knot which can be changed to unknot by switching crossings. The unknotting number of a knot is always less than half of its crossing number.

References

  1. Schubert, H. "Die eindeutige Zerlegbarkeit eines Knotens in Primknoten". S.-B Heidelberger Akad. Wiss. Math.-Nat. Kl. 1949 (1949), 57104.