Prime knot

Last updated
Simplest prime link Hopf Link.png
Simplest prime link

In knot theory, a prime knot or prime link is a knot that is, in a certain sense, indecomposable. Specifically, it is a non-trivial knot which cannot be written as the knot sum of two non-trivial knots. Knots that are not prime are said to be composite knots or composite links. It can be a nontrivial problem to determine whether a given knot is prime or not.

Contents

A family of examples of prime knots are the torus knots. These are formed by wrapping a circle around a torus p times in one direction and q times in the other, where p and q are coprime integers.

Knots are characterized by their crossing numbers. The simplest prime knot is the trefoil with three crossings. The trefoil is actually a (2, 3)-torus knot. The figure-eight knot, with four crossings, is the simplest non-torus knot. For any positive integer n, there are a finite number of prime knots with n crossings. The first few values (sequence A002863 in the OEIS ) and (sequence A086825 in the OEIS ) are given in the following table.

n12345678910111213141516171819
Number of prime knots
with n crossings
0011237214916555221769988469722532931388705805339348266466294130458
Composite knots00000215..................
Total 001125826..................

Enantiomorphs are counted only once in this table and the following chart (i.e. a knot and its mirror image are considered equivalent).

A chart of all prime knots with seven or fewer crossings, not including mirror-images, plus the unknot (which is not considered prime). Knot table.svg
A chart of all prime knots with seven or fewer crossings, not including mirror-images, plus the unknot (which is not considered prime).

Schubert's theorem

A theorem due to Horst Schubert (1919-2001) states that every knot can be uniquely expressed as a connected sum of prime knots. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Knot theory</span> Study of mathematical knots

In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself.

A highly composite number is a positive integer that has more divisors than any smaller positive integer. A related concept is that of a largely composite number, a positive integer that has at least as many divisors as any smaller positive integer. The name can be somewhat misleading, as the first two highly composite numbers are not actually composite numbers; however, all further terms are.

21 (twenty-one) is the natural number following 20 and preceding 22.

In recreational mathematics, a repdigit or sometimes monodigit is a natural number composed of repeated instances of the same digit in a positional number system. The word is a portmanteau of "repeated" and "digit". Examples are 11, 666, 4444, and 999999. All repdigits are palindromic numbers and are multiples of repunits. Other well-known repdigits include the repunit primes and in particular the Mersenne primes.

70 (seventy) is the natural number following 69 and preceding 71.

79 (seventy-nine) is the natural number following 78 and preceding 80.

34 (thirty-four) is the natural number following 33 and preceding 35.

57 (fifty-seven) is the natural number following 56 and preceding 58.

58 (fifty-eight) is the natural number following 57 and preceding 59.

<span class="mw-page-title-main">Trefoil knot</span> Simplest non-trivial closed knot with three crossings

In knot theory, a branch of mathematics, the trefoil knot is the simplest example of a nontrivial knot. The trefoil can be obtained by joining the two loose ends of a common overhand knot, resulting in a knotted loop. As the simplest knot, the trefoil is fundamental to the study of mathematical knot theory.

In mathematics, and more particularly in number theory, primorial, denoted by "#", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers.

The On-Line Encyclopedia of Integer Sequences (OEIS) is an online database of integer sequences. It was created and maintained by Neil Sloane while researching at AT&T Labs. He transferred the intellectual property and hosting of the OEIS to the OEIS Foundation in 2009. Sloane is the chairman of the OEIS Foundation.

<span class="mw-page-title-main">Torus knot</span> Knot which lies on the surface of a torus in 3-dimensional space

In knot theory, a torus knot is a special kind of knot that lies on the surface of an unknotted torus in R3. Similarly, a torus link is a link which lies on the surface of a torus in the same way. Each torus knot is specified by a pair of coprime integers p and q. A torus link arises if p and q are not coprime. A torus knot is trivial if and only if either p or q is equal to 1 or −1. The simplest nontrivial example is the (2,3)-torus knot, also known as the trefoil knot.

<span class="mw-page-title-main">Slice knot</span> Knot that bounds an embedded disk in 4-space

A slice knot is a mathematical knot in 3-dimensional space that bounds an embedded disk in 4-dimensional space.

177 is the natural number following 176 and preceding 178.

In the mathematical theory of knots, a satellite knot is a knot that contains an incompressible, non boundary-parallel torus in its complement. Every knot is either hyperbolic, a torus, or a satellite knot. The class of satellite knots include composite knots, cable knots, and Whitehead doubles. A satellite link is one that orbits a companion knot K in the sense that it lies inside a regular neighborhood of the companion.

14 (fourteen) is the natural number following 13 and preceding 15.

<span class="mw-page-title-main">Unknotting number</span> Minimum number of times a specific knot must be passed through itself to become untied

In the mathematical area of knot theory, the unknotting number of a knot is the minimum number of times the knot must be passed through itself to untie it. If a knot has unknotting number , then there exists a diagram of the knot which can be changed to unknot by switching crossings. The unknotting number of a knot is always less than half of its crossing number. This invariant was first defined by Hilmar Wendt in 1936.

References

  1. Schubert, H. "Die eindeutige Zerlegbarkeit eines Knotens in Primknoten". S.-B Heidelberger Akad. Wiss. Math.-Nat. Kl. 1949 (1949), 57104.