Superalgebra

Last updated

In mathematics and theoretical physics, a superalgebra is a Z2-graded algebra. [1] That is, it is an algebra over a commutative ring or field with a decomposition into "even" and "odd" pieces and a multiplication operator that respects the grading.

Contents

The prefix super- comes from the theory of supersymmetry in theoretical physics. Superalgebras and their representations, supermodules, provide an algebraic framework for formulating supersymmetry. The study of such objects is sometimes called super linear algebra. Superalgebras also play an important role in related field of supergeometry where they enter into the definitions of graded manifolds, supermanifolds and superschemes.

Formal definition

Let K be a commutative ring. In most applications, K is a field of characteristic 0, such as R or C.

A superalgebra over K is a K-module A with a direct sum decomposition

together with a bilinear multiplication A×AA such that

where the subscripts are read modulo 2, i.e. they are thought of as elements of Z2.

A superring, or Z2-graded ring, is a superalgebra over the ring of integers Z.

The elements of each of the Ai are said to be homogeneous. The parity of a homogeneous element x, denoted by |x|, is 0 or 1 according to whether it is in A0 or A1. Elements of parity 0 are said to be even and those of parity 1 to be odd. If x and y are both homogeneous then so is the product xy and .

An associative superalgebra is one whose multiplication is associative and a unital superalgebra is one with a multiplicative identity element. The identity element in a unital superalgebra is necessarily even. Unless otherwise specified, all superalgebras in this article are assumed to be associative and unital.

A commutative superalgebra (or supercommutative algebra) is one which satisfies a graded version of commutativity. Specifically, A is commutative if

for all homogeneous elements x and y of A. There are superalgebras that are commutative in the ordinary sense, but not in the superalgebra sense. For this reason, commutative superalgebras are often called supercommutative in order to avoid confusion. [2]

Sign conventions

When the Z2 grading arises as a "rollup" of a Z- or N-graded algebra into even and odd components, then two distinct (but essentially equivalent) sign conventions can be found in the literature. [3] These can be called the "cohomological sign convention" and the "super sign convention". They differ in how the antipode (exchange of two elements) behaves. In the first case, one has an exchange map

where is the degree (Z- or N-grading) of and the parity. Likewise, is the degree of and with parity This convention is commonly seen in conventional mathematical settings, such as differential geometry and differential topology. The other convention is to take

with the parities given as and the parity. This is more often seen in physics texts, and requires a parity functor to be judiciously employed to track isomorphisms. Detailed arguments are provided by Pierre Deligne [3]

Examples

Further definitions and constructions

Even subalgebra

Let A be a superalgebra over a commutative ring K. The submodule A0, consisting of all even elements, is closed under multiplication and contains the identity of A and therefore forms a subalgebra of A, naturally called the even subalgebra. It forms an ordinary algebra over K.

The set of all odd elements A1 is an A0-bimodule whose scalar multiplication is just multiplication in A. The product in A equips A1 with a bilinear form

such that

for all x, y, and z in A1. This follows from the associativity of the product in A.

Grade involution

There is a canonical involutive automorphism on any superalgebra called the grade involution. It is given on homogeneous elements by

and on arbitrary elements by

where xi are the homogeneous parts of x. If A has no 2-torsion (in particular, if 2 is invertible) then the grade involution can be used to distinguish the even and odd parts of A:

Supercommutativity

The supercommutator on A is the binary operator given by

on homogeneous elements, extended to all of A by linearity. Elements x and y of A are said to supercommute if [x, y] = 0.

The supercenter of A is the set of all elements of A which supercommute with all elements of A:

The supercenter of A is, in general, different than the center of A as an ungraded algebra. A commutative superalgebra is one whose supercenter is all of A.

Super tensor product

The graded tensor product of two superalgebras A and B may be regarded as a superalgebra AB with a multiplication rule determined by:

If either A or B is purely even, this is equivalent to the ordinary ungraded tensor product (except that the result is graded). However, in general, the super tensor product is distinct from the tensor product of A and B regarded as ordinary, ungraded algebras.

Generalizations and categorical definition

One can easily generalize the definition of superalgebras to include superalgebras over a commutative superring. The definition given above is then a specialization to the case where the base ring is purely even.

Let R be a commutative superring. A superalgebra over R is a R-supermodule A with a R-bilinear multiplication A×AA that respects the grading. Bilinearity here means that

for all homogeneous elements rR and x, yA.

Equivalently, one may define a superalgebra over R as a superring A together with an superring homomorphism RA whose image lies in the supercenter of A.

One may also define superalgebras categorically. The category of all R-supermodules forms a monoidal category under the super tensor product with R serving as the unit object. An associative, unital superalgebra over R can then be defined as a monoid in the category of R-supermodules. That is, a superalgebra is an R-supermodule A with two (even) morphisms

for which the usual diagrams commute.

Notes

  1. Kac, Martinez & Zelmanov 2001 , p. 3
  2. Varadarajan 2004 , p. 87
  3. 1 2 See Deligne's discussion of these two cases.

Related Research Articles

In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.

In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted .

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.

In mathematics, an algebra over a field is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear".

<span class="mw-page-title-main">Exterior algebra</span> Algebra of exterior/ wedge products

In mathematics, the exterior algebra or Grassmann algebra of a vector space is an associative algebra that contains which has a product, called exterior product or wedge product and denoted with , such that for every vector in The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol and the fact that the product of two elements of is "outside"

In mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a ‑grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry.

In mathematics, a Poisson algebra is an associative algebra together with a Lie bracket that also satisfies Leibniz's law; that is, the bracket is also a derivation. Poisson algebras appear naturally in Hamiltonian mechanics, and are also central in the study of quantum groups. Manifolds with a Poisson algebra structure are known as Poisson manifolds, of which the symplectic manifolds and the Poisson–Lie groups are a special case. The algebra is named in honour of Siméon Denis Poisson.

In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra.

In mathematics, the symmetric algebraS(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism g : S(V) → A such that f = gi, where i is the inclusion map of V in S(V).

In mathematics, a supercommutative (associative) algebra is a superalgebra such that for any two homogeneous elements x, y we have

In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms:

  1. .

In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence.

In mathematics and theoretical physics, a supermatrix is a Z2-graded analog of an ordinary matrix. Specifically, a supermatrix is a 2×2 block matrix with entries in a superalgebra. The most important examples are those with entries in a commutative superalgebra or an ordinary field.

In mathematics, a super vector space is a -graded vector space, that is, a vector space over a field with a given decomposition of subspaces of grade and grade . The study of super vector spaces and their generalizations is sometimes called super linear algebra. These objects find their principal application in theoretical physics where they are used to describe the various algebraic aspects of supersymmetry.

In mathematics, a graded Lie algebra is a Lie algebra endowed with a gradation which is compatible with the Lie bracket. In other words, a graded Lie algebra is a Lie algebra which is also a nonassociative graded algebra under the bracket operation. A choice of Cartan decomposition endows any semisimple Lie algebra with the structure of a graded Lie algebra. Any parabolic Lie algebra is also a graded Lie algebra.

In mathematics, a supermodule is a Z2-graded module over a superring or superalgebra. Supermodules arise in super linear algebra which is a mathematical framework for studying the concept supersymmetry in theoretical physics.

In ring theory, a branch of mathematics, a ring R is a polynomial identity ring if there is, for some N > 0, an element P ≠ 0 of the free algebra, ZX1, X2, ..., XN, over the ring of integers in N variables X1, X2, ..., XN such that

In mathematics, the term "graded" has a number of meanings, mostly related:

References