Little hierarchy problem

Last updated

In particle physics the little hierarchy problem in the Minimal Supersymmetric Standard Model (MSSM) is a refinement of the hierarchy problem. According to quantum field theory, the mass of the Higgs boson must be rather light for the electroweak theory to work. However, the loop corrections to the mass are naturally much greater; this is known as the hierarchy problem. New physical effects such as supersymmetry may in principle reduce the size of the loop corrections, making the theory natural. However, it is known from experiments that new physics such as superpartners does not occur at very low energy scales, so even if these new particles reduce the loop corrections, they do not reduce them enough to make the renormalized Higgs mass completely natural. The expected value of the Higgs mass is about 10% of the size of the loop corrections which shows that a certain "little" amount of fine-tuning seems necessary. [1]

Contents

Particle physicists have different opinions as to whether the little hierarchy problem is serious.

Overview

By supersymmetrizing the Standard Model, one arrives at a hypothesized solution to the gauge hierarchy, or big hierarchy, problem in that supersymmetry guarantees cancellation of quadratic divergences to all orders in perturbation theory. The simplest supersymmetrization of the SM leads to the Minimal Supersymmetric Standard Model or MSSM. In the MSSM, each SM particle has a partner particle known as a super-partner or sparticle. For instance, the left- and right-electron helicity components have scalar partner selectrons ~eL and ~eR respectively, whilst the eight colored gluons have eight colored spin-1/2 gluino superpartners. The MSSM Higgs sector must necessarily be expanded to include two rather than one doublets leading to five physical Higgs particles h, H, A and H±, whilst three of the eight Higgs component fields are absorbed by the W± and Z bosons to make them massive. The MSSM is actually supported by three different sets of measurements which test for the presence of virtual superpartners:

  1. the celebrated weak scale measurements of the three gauge couplings strengths are just what is needed for gauge coupling unification at a scale Q2×1016 GeV
  2. the value of mt ≈ 173 GeV falls squarely in the range needed to trigger a radiatively driven breakdown in electroweak symmetry and
  3. the measured value of mh ≈ 125 GeV falls within the narrow window of allowed values for the MSSM.

Nonetheless, verification of weak scale SUSY (WSS, SUSY with superpartner masses at or around the weak scale as characterized by m(W, Z, h) ≈ 100 GeV) requires the direct observation of at least some of the superpartners in sufficiently energetic colliding beam experiments.[ clarification needed ] As recent as 2017, the CERN Large Hadron Collider, a p–p collider operating at centre-of-mass energy 13 TeV, has not found any evidence for superpartners. This has led to mass limits on the gluino m~g > 2 TeV and on the lighter top squark m~t1 > 1 TeV (within the context of certain simplified models that are assumed to make the experimental analysis more tractable). Along with these limits, the rather large measured value of mh ≈ 125 GeV seems to require TeV-scale highly mixed top squarks. These combined measurements have raised concern now about an emerging Little Hierarchy problem characterized by mW,Z,hmsparticle. Under the Little Hierarchy, one might expect the now log-divergent light Higgs mass to blow up to the sparticle mass scale unless one fine-tunes. The Little Hierarchy problem has led to concern that WSS is perhaps not realized in nature, or at least not in the manner typically expected by theorists in years past.

Status

In the MSSM, the light Higgs mass is calculated to be

where the mixing and loop contributions are below mh2 but where in most models, the soft SUSY breaking up-Higgs mass mHu2 is driven to large, TeV-scale negative values (in order to break electroweak symmetry). Then, to maintain the measured value of mh = 125 GeV, one must tune the superpotential mass term μ2 to some large positive value. Alternatively, for natural SUSY, one may expect that mHu2 runs to small negative values, in which case both μ and |mHu| are of order 100–200 GeV. This already leads to a prediction: since μ is supersymmetric and feeds mass to both SM particles (W, Z, h) and superpartners (higgsinos), then it is expected from the natural MSSM that light higgsinos exist nearby to the 100–200 GeV scale. This simple realization has profound implications for WSS collider and dark matter searches.

Naturalness in the MSSM has historically been expressed in terms of the Z-boson mass, and indeed this approach leads to more stringent upper bounds on sparticle masses. By minimizing the (Coleman-Weinberg) scalar potential of the MSSM, then one may relate the measured value of mZ = 91.2 GeV to the SUSY Lagrangian parameters:

Here, tan β ≈ 5–50 is the ratio of Higgs field vacuum expectation values vu/vd and mHd2 is the down-Higgs soft breaking mass term. The and contain a variety of loop corrections labelled by indices i and j, the most important of which typically comes from the top-squarks.

See also

Related Research Articles

<span class="mw-page-title-main">Elementary particle</span> Subatomic particle having no known substructure

In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a consequence of flavor and color combinations and antimatter, the fermions and bosons are known to have 48 and 13 variations, respectively. Among the 61 elementary particles embraced by the Standard Model number: electrons and other leptons, quarks, and the fundamental bosons. Subatomic particles such as protons or neutrons, which contain two or more elementary particles, are known as composite particles.

<span class="mw-page-title-main">Grand Unified Theory</span> Comprehensive physical model

Grand Unified Theory (GUT) is any model in particle physics that merges the electromagnetic, weak, and strong forces into a single force at high energies. Although this unified force has not been directly observed, many GUT models theorize its existence. If the unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the very early universe in which these three fundamental interactions were not yet distinct.

<span class="mw-page-title-main">Proton decay</span> Hypothetical particle decay process of a proton

In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed. If it does decay via a positron, the proton's half-life is constrained to be at least 1.67×1034 years.

Supersymmetry is a theoretical framework in physics that suggests the existence of a symmetry between particles with integer spin (bosons) and particles with half-integer spin (fermions). It proposes that for every known particle, there exists a partner particle with different spin properties. There have been multiple experiments on supersymmetry that have failed to provide evidence that it exists in nature. If evidence is found, supersymmetry could help explain certain phenomena, such as the nature of dark matter and the hierarchy problem in particle physics.

<span class="mw-page-title-main">Technicolor (physics)</span> Hypothetical model through which W and Z bosons acquire mass

Technicolor theories are models of physics beyond the Standard Model that address electroweak gauge symmetry breaking, the mechanism through which W and Z bosons acquire masses. Early technicolor theories were modelled on quantum chromodynamics (QCD), the "color" theory of the strong nuclear force, which inspired their name.

In supersymmetry, the neutralino is a hypothetical particle. In the Minimal Supersymmetric Standard Model (MSSM), a popular model of realization of supersymmetry at a low energy, there are four neutralinos that are fermions and are electrically neutral, the lightest of which is stable in an R-parity conserved scenario of MSSM. They are typically labeled
0
1
,
0
2
,
0
3
and
0
4
although sometimes is also used when is used to refer to charginos.

<span class="mw-page-title-main">Minimal Supersymmetric Standard Model</span> Simplest supersymmetric extension to the Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] number of new particle states and new interactions consistent with "Reality". Supersymmetry pairs bosons with fermions, so every Standard Model particle has a superpartner. If discovered, such superparticles could be candidates for dark matter, and could provide evidence for grand unification or the viability of string theory. The failure to find evidence for MSSM using the Large Hadron Collider has strengthened an inclination to abandon it.

<span class="mw-page-title-main">Hierarchy problem</span> Unsolved problem in physics

In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than gravity.

In particle physics, supersymmetry breaking is the process to obtain a seemingly non-supersymmetric physics from a supersymmetric theory which is a necessary step to reconcile supersymmetry with actual experiments. It is an example of spontaneous symmetry breaking. In supergravity, this results in a slightly modified counterpart of the Higgs mechanism where the gravitinos become massive.

<span class="mw-page-title-main">Higgsino</span> Supersymmetric partner of the Higgs boson

In particle physics, for models with N = 1 supersymmetry a higgsino, symbol

, is the superpartner of the Higgs field. A higgsino is a Dirac fermionic field with spin 1/2 and it refers to a weak isodoublet with hypercharge half under the Standard Model gauge symmetries. After electroweak symmetry breaking higgsino fields linearly mix with U(1) and SU(2) gauginos leading to four neutralinos and two charginos that refer to physical particles. While the two charginos are charged Dirac fermions, the neutralinos are electrically neutral Majorana fermions. In an R-parity-conserving version of the Minimal Supersymmetric Standard Model, the lightest neutralino typically becomes the lightest supersymmetric particle (LSP). The LSP is a particle physics candidate for the dark matter of the universe since it cannot decay to particles with lighter mass. A neutralino LSP, depending on its composition can be bino, wino or higgsino dominated in nature and can have different zones of mass values in order to satisfy the estimated dark matter relic density. Commonly, a higgsino dominated LSP is often referred as a higgsino, in spite of the fact that a higgsino is not a physical state in the true sense.

In field theory, the Stueckelberg action describes a massive spin-1 field as an R Yang–Mills theory coupled to a real scalar field . This scalar field takes on values in a real 1D affine representation of R with as the coupling strength.

In particle physics, the doublet–triplet (splitting) problem is a problem of some Grand Unified Theories, such as SU(5), SO(10), and . Grand unified theories predict Higgs bosons arise from representations of the unified group that contain other states, in particular, states that are triplets of color. The primary problem with these color triplet Higgs is that they can mediate proton decay in supersymmetric theories that are only suppressed by two powers of GUT scale. In addition to mediating proton decay, they alter gauge coupling unification. The doublet–triplet problem is the question 'what keeps the doublets light while the triplets are heavy?'

In theoretical physics, there are many theories with supersymmetry (SUSY) which also have internal gauge symmetries. Supersymmetric gauge theory generalizes this notion.

In supersymmetric extension to the Standard Model (SM) of physics, a sfermion is a hypothetical spin-0 superpartner particle (sparticle) of its associated fermion. Each particle has a superpartner with spin that differs by 1/2. Fermions in the SM have spin-1/2 and, therefore, sfermions have spin 0.

<span class="mw-page-title-main">Physics beyond the Standard Model</span> Theories trying to extend known physics

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.

In particle physics, NMSSM is an acronym for Next-to-Minimal Supersymmetric Standard Model. It is a supersymmetric extension to the Standard Model that adds an additional singlet chiral superfield to the MSSM and can be used to dynamically generate the term, solving the -problem. Articles about the NMSSM are available for review.

In particle physics, the Peskin–Takeuchi parameters are a set of three measurable quantities, called S, T, and U, that parameterize potential new physics contributions to electroweak radiative corrections. They are named after physicists Michael Peskin and Tatsu Takeuchi, who proposed the parameterization in 1990; proposals from two other groups came almost simultaneously.

In theoretical physics, the μ problem is a problem of supersymmetric theories, concerned with understanding the parameters of the theory.

In particle physics, a stop squark, symbol

, is the superpartner of the top quark as predicted by supersymmetry (SUSY). It is a sfermion, which means it is a spin-0 boson. While the top quark is the heaviest known quark, the stop squark is actually often the lightest squark in many supersymmetry models.

This page is a glossary of terms in string theory, including related areas such as supergravity, supersymmetry, and high energy physics.

References

  1. Riccardo Barbieri, Alessandro Strumia (2000). "The LEP paradox". arXiv: hep-ph/0007265 .