Supersymmetric quantum mechanics

Last updated

In theoretical physics, supersymmetric quantum mechanics is an area of research where supersymmetry are applied to the simpler setting of plain quantum mechanics, rather than quantum field theory. Supersymmetric quantum mechanics has found applications outside of high-energy physics, such as providing new methods to solve quantum mechanical problems, providing useful extensions to the WKB approximation, and statistical mechanics.

Contents

Introduction

Understanding the consequences of supersymmetry (SUSY) has proven mathematically daunting, and it has likewise been difficult to develop theories that could account for symmetry breaking, i.e., the lack of observed partner particles of equal mass. To make progress on these problems, physicists developed supersymmetric quantum mechanics, an application of the supersymmetry superalgebra to quantum mechanics as opposed to quantum field theory. It was hoped that studying SUSY's consequences in this simpler setting would lead to new understanding; remarkably, the effort created new areas of research in quantum mechanics itself.

For example, students are typically taught to "solve" the hydrogen atom by a laborious process which begins by inserting the Coulomb potential into the Schrödinger equation. After a considerable amount of work using many differential equations, the analysis produces a recursion relation for the Laguerre polynomials. The outcome is the spectrum of hydrogen-atom energy states (labeled by quantum numbers n and l). Using ideas drawn from SUSY, the final result can be derived with significantly greater ease, in much the same way that operator methods are used to solve the harmonic oscillator. [1] A similar supersymmetric approach can also be used to more accurately find the hydrogen spectrum using the Dirac equation. [2] Oddly enough, this approach is analogous to the way Erwin Schrödinger first solved the hydrogen atom. [3] [4] Of course, he did not call his solution supersymmetric, as SUSY was thirty years in the future.

The SUSY solution of the hydrogen atom is only one example of the very general class of solutions which SUSY provides to shape-invariant potentials, a category which includes most potentials taught in introductory quantum mechanics courses.

SUSY quantum mechanics involves pairs of Hamiltonians which share a particular mathematical relationship, which are called partner Hamiltonians. (The potential energy terms which occur in the Hamiltonians are then called partner potentials.) An introductory theorem shows that for every eigenstate of one Hamiltonian, its partner Hamiltonian has a corresponding eigenstate with the same energy (except possibly for zero energy eigenstates). This fact can be exploited to deduce many properties of the eigenstate spectrum. It is analogous to the original description of SUSY, which referred to bosons and fermions. We can imagine a "bosonic Hamiltonian", whose eigenstates are the various bosons of our theory. The SUSY partner of this Hamiltonian would be "fermionic", and its eigenstates would be the theory's fermions. Each boson would have a fermionic partner of equal energy—but, in the relativistic world, energy and mass are interchangeable, so we can just as easily say that the partner particles have equal mass.

SUSY concepts have provided useful extensions to the WKB approximation in the form of a modified version of the Bohr-Sommerfeld quantization condition. In addition, SUSY has been applied to non-quantum statistical mechanics through the Fokker–Planck equation, showing that even if the original inspiration in high-energy particle physics turns out to be a blind alley, its investigation has brought about many useful benefits.

Example: the harmonic oscillator

The Schrödinger equation for the harmonic oscillator takes the form

where is the th energy eigenstate of with energy . We want to find an expression for in terms of . We define the operators

and

where , which we need to choose, is called the superpotential of . We also define the aforementioned partner Hamiltonians and as

A zero energy ground state of would satisfy the equation

Assuming that we know the ground state of the harmonic oscillator , we can solve for as

We then find that

We can now see that

This is a special case of shape invariance, discussed below. Taking without proof the introductory theorem mentioned above, it is apparent that the spectrum of will start with and continue upwards in steps of The spectra of and will have the same even spacing, but will be shifted up by amounts and , respectively. It follows that the spectrum of is therefore the familiar .

The SUSY QM superalgebra

In fundamental quantum mechanics, we learn that an algebra of operators is defined by commutation relations among those operators. For example, the canonical operators of position and momentum have the commutator . (Here, we use "natural units" where Planck's constant is set equal to 1.) A more intricate case is the algebra of angular momentum operators; these quantities are closely connected to the rotational symmetries of three-dimensional space. To generalize this concept, we define an anticommutator, which relates operators the same way as an ordinary commutator, but with the opposite sign:

If operators are related by anticommutators as well as commutators, we say they are part of a Lie superalgebra. Let's say we have a quantum system described by a Hamiltonian and a set of operators . We shall call this system supersymmetric if the following anticommutation relation is valid for all :

If this is the case, then we call the system's supercharges.

Example

Let's look at the example of a one-dimensional nonrelativistic particle with a 2D (i.e., two states) internal degree of freedom called "spin" (it's not really spin because "real" spin is a property of 3D particles). Let be an operator which transforms a "spin up" particle into a "spin down" particle. Its adjoint then transforms a spin down particle into a spin up particle; the operators are normalized such that the anticommutator . And of course, . Let be the momentum of the particle and be its position with . Let (the "superpotential") be an arbitrary complex analytic function of and define the supersymmetric operators

Note that and are self-adjoint. Let the Hamiltonian

where W' is the derivative of W. Also note that {Q1,Q2}=0. This is nothing other than N = 2 supersymmetry. Note that acts like an electromagnetic vector potential.

Let's also call the spin down state "bosonic" and the spin up state "fermionic". This is only in analogy to quantum field theory and should not be taken literally. Then, Q1 and Q2 maps "bosonic" states into "fermionic" states and vice versa.

Let's reformulate this a bit:

Define

and of course,

and

An operator is "bosonic" if it maps "bosonic" states to "bosonic" states and "fermionic" states to "fermionic" states. An operator is "fermionic" if it maps "bosonic" states to "fermionic" states and vice versa. Any operator can be expressed uniquely as the sum of a bosonic operator and a fermionic operator. Define the supercommutator [,} as follows: Between two bosonic operators or a bosonic and a fermionic operator, it is none other than the commutator but between two fermionic operators, it is an anticommutator.

Then, x and p are bosonic operators and b, , Q and are fermionic operators.

Let's work in the Heisenberg picture where x, b and are functions of time.

Then,

This is nonlinear in general: i.e., x(t), b(t) and do not form a linear SUSY representation because isn't necessarily linear in x. To avoid this problem, define the self-adjoint operator . Then,

and we see that we have a linear SUSY representation.

Now let's introduce two "formal" quantities, ; and with the latter being the adjoint of the former such that

and both of them commute with bosonic operators but anticommute with fermionic ones.

Next, we define a construct called a superfield:

f is self-adjoint, of course. Then,

Incidentally, there's also a U(1)R symmetry, with p and x and W having zero R-charges and having an R-charge of 1 and b having an R-charge of -1.

Shape invariance

Suppose is real for all real . Then we can simplify the expression for the Hamiltonian to

There are certain classes of superpotentials such that both the bosonic and fermionic Hamiltonians have similar forms. Specifically

where the 's are parameters. For example, the hydrogen atom potential with angular momentum can be written this way.

This corresponds to for the superpotential

This is the potential for angular momentum shifted by a constant. After solving the ground state, the supersymmetric operators can be used to construct the rest of the bound state spectrum.

In general, since and are partner potentials, they share the same energy spectrum except the one extra ground energy. We can continue this process of finding partner potentials with the shape invariance condition, giving the following formula for the energy levels in terms of the parameters of the potential

where are the parameters for the multiple partnered potentials.

Applications

In 2021, supersymmetric quantum mechanics was applied to option pricing and the analysis of markets in quantum finance, [5] and to financial networks. [6]

See also

Related Research Articles

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state which has dynamics most closely resembling the oscillatory behavior of a classical harmonic oscillator. It was the first example of quantum dynamics when Erwin Schrödinger derived it in 1926, while searching for solutions of the Schrödinger equation that satisfy the correspondence principle. The quantum harmonic oscillator arise in the quantum theory of a wide range of physical systems. For instance, a coherent state describes the oscillating motion of a particle confined in a quadratic potential well. The coherent state describes a state in a system for which the ground-state wavepacket is displaced from the origin of the system. This state can be related to classical solutions by a particle oscillating with an amplitude equivalent to the displacement.

Superspace is the coordinate space of a theory exhibiting supersymmetry. In such a formulation, along with ordinary space dimensions x, y, z, ..., there are also "anticommuting" dimensions whose coordinates are labeled in Grassmann numbers rather than real numbers. The ordinary space dimensions correspond to bosonic degrees of freedom, the anticommuting dimensions to fermionic degrees of freedom.

Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator lowers the number of particles in a given state by one. A creation operator increases the number of particles in a given state by one, and it is the adjoint of the annihilation operator. In many subfields of physics and chemistry, the use of these operators instead of wavefunctions is known as second quantization. They were introduced by Paul Dirac.

In theoretical physics, path-ordering is the procedure that orders a product of operators according to the value of a chosen parameter:

<span class="mw-page-title-main">Canonical quantization</span> Process of converting a classical physical theory into one compatible with quantum mechanics

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory to the greatest extent possible.

In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below.

In theoretical physics, the superpotential is a function in supersymmetric quantum mechanics. Given a superpotential, two "partner potentials" are derived that can each serve as a potential in the Schrödinger equation. The partner potentials have the same spectrum, apart from a possible eigenvalue of zero, meaning that the physical systems represented by the two potentials have the same characteristic energies, apart from a possible zero-energy ground state.

In quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bosonic fields.

In theoretical physics, there are many theories with supersymmetry (SUSY) which also have internal gauge symmetries. Supersymmetric gauge theory generalizes this notion.

<span class="mw-page-title-main">Jaynes–Cummings model</span> Model in quantum optics

The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.

In quantum mechanics, Landau quantization refers to the quantization of the cyclotron orbits of charged particles in a uniform magnetic field. As a result, the charged particles can only occupy orbits with discrete energy values, called Landau levels. These levels are degenerate, with the number of electrons per level directly proportional to the strength of the applied magnetic field. It is named after the Soviet physicist Lev Landau.

Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin should not be conceptualized as involving the "rotation" of a particle's "internal mass", as ordinary use of the word may suggest: spin is a quantized property of waves.

<span class="mw-page-title-main">Optical phase space</span> Phase space used in quantum optics

In quantum optics, an optical phase space is a phase space in which all quantum states of an optical system are described. Each point in the optical phase space corresponds to a unique state of an optical system. For any such system, a plot of the quadratures against each other, possibly as functions of time, is called a phase diagram. If the quadratures are functions of time then the optical phase diagram can show the evolution of a quantum optical system with time.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems.

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

The Peierls substitution method, named after the original work by Rudolf Peierls is a widely employed approximation for describing tightly-bound electrons in the presence of a slowly varying magnetic vector potential.

Supersymmetric theory of stochastic dynamics or stochastics (STS) is an exact theory of stochastic (partial) differential equations (SDEs), the class of mathematical models with the widest applicability covering, in particular, all continuous time dynamical systems, with and without noise. The main utility of the theory from the physical point of view is a rigorous theoretical explanation of the ubiquitous spontaneous long-range dynamical behavior that manifests itself across disciplines via such phenomena as 1/f, flicker, and crackling noises and the power-law statistics, or Zipf's law, of instantonic processes like earthquakes and neuroavalanches. From the mathematical point of view, STS is interesting because it bridges the two major parts of mathematical physics – the dynamical systems theory and topological field theories. Besides these and related disciplines such as algebraic topology and supersymmetric field theories, STS is also connected with the traditional theory of stochastic differential equations and the theory of pseudo-Hermitian operators.

References

  1. Valance, A.; Morgan, T. J.; Bergeron, H. (1990), "Eigensolution of the Coulomb Hamiltonian via supersymmetry", American Journal of Physics, AAPT, 58 (5): 487–491, Bibcode:1990AmJPh..58..487V, doi:10.1119/1.16452, archived from the original on 2013-02-24
  2. Thaller, B. (1992). The Dirac Equation. Texts and Monographs in Physics. Springer.
  3. Schrödinger, Erwin (1940), "A Method of Determining Quantum-Mechanical Eigenvalues and Eigenfunctions", Proceedings of the Royal Irish Academy, Royal Irish Academy, 46: 9–16
  4. Schrödinger, Erwin (1941), "Further Studies on Solving Eigenvalue Problems by Factorization", Proceedings of the Royal Irish Academy, Royal Irish Academy, 46: 183–206
  5. Halperin, Igor (14 January 2021). "Non-Equilibrium Skewness, Market Crises, and Option Pricing: Non-Linear Langevin Model of Markets with Supersymmetry". SSRN   3724000.
  6. Bardoscia, Marco; Barucca, Paolo; Battiston, Stefano; Caccioli, Fabio; Cimini, Giulio; Garlaschelli, Diego; Saracco, Fabio; Squartini, Tiziano; Caldarelli, Guido (10 June 2021). "The physics of financial networks". Nature Reviews Physics. 3 (7): 490–507. arXiv: 2103.05623 . doi:10.1038/s42254-021-00322-5. S2CID   232168335.

Sources