In theoretical physics a nonrenormalization theorem is a limitation on how a certain quantity in the classical description of a quantum field theory may be modified by renormalization in the full quantum theory. Renormalization theorems are common in theories with a sufficient amount of supersymmetry, usually at least 4 supercharges.
Perhaps the first nonrenormalization theorem was introduced by Marcus T. Grisaru, Martin Rocek and Warren Siegel in their 1979 paper Improved methods for supergraphs.
Nonrenormalization theorems in supersymmetric theories are often consequences of the fact that certain objects must have a holomorphic dependence on the quantum fields and coupling constants. In this case the nonrenormalization theory is said to be a consequence of holomorphy.
The more supersymmetry a theory has, the more renormalization theorems apply. Therefore a renormalization theorem that is valid for a theory with supersymmetries will also apply to any theory with more than supersymmetries.
In 4 dimensions the number counts the number of 4-component Majorana spinors of supercharges. Some examples of nonrenormalization theorems in 4-dimensional supersymmetric theories are:
In an 4D SUSY theory involving only chiral superfields, the superpotential is immune from renormalization. With an arbitrary field content it is immune from renormalization in perturbation theory but may be renormalized by nonperturbative effects such as instantons.
In an 4D SUSY theory the moduli space of the hypermultiplets, called the Higgs branch, has a hyper-Kähler metric and is not renormalized. In the article Lagrangians of N=2 Supergravity - Matter Systems it was further shown that this metric is independent of the scalars in the vector multiplets. They also proved that the metric of the Coulomb branch, which is a rigid special Kähler manifold parametrized by the scalars in vector multiplets, is independent of the scalars in the hypermultiplets. Therefore the vacuum manifold is locally a product of a Coulomb and Higgs branch. The derivations of these statements appear in The Moduli Space of N=2 SUSY QCD and Duality in N=1 SUSY QCD.
In an 4D SUSY theory the superpotential is entirely determined by the matter content of the theory. Also there are no perturbative corrections to the β-function beyond one-loop, as was shown in 1983 in the article Superspace Or One Thousand and One Lessons in Supersymmetry by Sylvester James Gates, Marcus Grisaru, Martin Rocek and Warren Siegel.
In super Yang–Mills the β-function is zero for all couplings, meaning that the theory is conformal. This was demonstrated perturbatively by Martin Sohnius and Peter West in the 1981 article Conformal Invariance in N=4 Supersymmetric Yang-Mills Theory under certain symmetry assumptions on the theory, and then with no assumptions by Stanley Mandelstam in the 1983 article Light Cone Superspace and the Ultraviolet Finiteness of the N=4 Model. The full nonperturbative proof by Nathan Seiberg appeared in the 1988 article Supersymmetry and Nonperturbative beta Functions.
In 3 dimensions the number counts the number of 2-component Majorana spinors of supercharges.
When there is no holomorphicity and few exact results are known.
When the superpotential cannot depend on the linear multiplets and in particular is independent of the Fayet–Iliopoulos terms (FI) and Majorana mass terms. On the other hand the central charge is independent of the chiral multiplets, and so is a linear combination of the FI and Majorana mass terms. These two theorems were stated and proven in Aspects of N=2 Supersymmetric Gauge Theories in Three Dimensions.
When , unlike , the R-symmetry is the nonabelian group SU(2) and so the representation of each field is not renormalized. In a super conformal field theory the conformal dimension of a chiral multiplet is entirely determined by its R-charge, and so these conformal dimensions are not renormalized. Therefore matter fields have no wave function renormalization in superconformal field theories, as was shown in On Mirror Symmetry in Three Dimensional Abelian Gauge Theories. These theories consist of vector multiplets and hypermultiplets. The hypermultiplet metric is hyperkähler and may not be lifted by quantum corrections, but its metric may be modified. No renormalizable interaction between hyper and abelian vector multiplets is possible except for Chern–Simons terms.
When , unlike the hypermultiplet metric may no longer be modified by quantum corrections.
In [ clarification needed ] linear sigma models, which are superrenormalizable abelian gauge theories with matter in chiral supermultiplets, Edward Witten has argued in Phases of N=2 theories in two-dimensions that the only divergent quantum correction is the logarithmic one-loop correction to the FI term.
In supersymmetric and nonsupersymmetric theories, the nonrenormalization of a quantity subject to the Dirac quantization condition is often a consequence of the fact that possible renormalizations would be inconsistent with the quantization condition, for example the quantization of the level of a Chern–Simons theory implies that it may only be renormalized at one-loop. In the 1994 article Nonrenormalization Theorem for Gauge Coupling in 2+1D the authors find the renormalization of the level can only be a finite shift, independent of the energy scale, and extended this result to topologically massive theories in which one includes a kinetic term for the gluons. In Notes on Superconformal Chern-Simons-Matter Theories the authors then showed that this shift needs to occur at one loop, because any renormalization at higher loops would introduce inverse powers of the level, which are nonintegral and so would be in conflict with the quantization condition.
In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a "selectron", a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly "unbroken" supersymmetry, each pair of superpartners would share the same mass and internal quantum numbers besides spin. More complex supersymmetry theories have a spontaneously broken symmetry, allowing superpartners to differ in mass.
Superspace is the coordinate space of a theory exhibiting supersymmetry. In such a formulation, along with ordinary space dimensions x, y, z, ..., there are also "anticommuting" dimensions whose coordinates are labeled in Grassmann numbers rather than real numbers. The ordinary space dimensions correspond to bosonic degrees of freedom, the anticommuting dimensions to fermionic degrees of freedom.
In theoretical physics, supergravity is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way.
The Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] number of new particle states and new interactions consistent with phenomenology". Supersymmetry pairs bosons with fermions, so every Standard Model particle has a superpartner yet undiscovered. If discovered, such superparticles could be candidates for dark matter, and could provide evidence for grand unification or the viability of string theory. The failure to find evidence for supersymmetry using the Large Hadron Collider has strengthened an inclination to abandon it.
Nathan "Nati" Seiberg is an Israeli American theoretical physicist who works on quantum field theory and string theory. He is currently a professor at the Institute for Advanced Study in Princeton, New Jersey, United States.
In theoretical physics, a supermultiplet is a representation of a supersymmetry algebra.
In quantum field theory, the term moduli is sometimes used to refer to scalar fields whose potential energy function has continuous families of global minima. Such potential functions frequently occur in supersymmetric systems. The term "modulus" is borrowed from mathematics, where it is used synonymously with "parameter". The word moduli first appeared in 1857 in Bernhard Riemann's celebrated paper "Theorie der Abel'schen Functionen".
In theoretical physics, the superpotential is a function in supersymmetric quantum mechanics. Given a superpotential, two "partner potentials" are derived that can each serve as a potential in the Schrödinger equation. The partner potentials have the same spectrum, apart from a possible eigenvalue of zero, meaning that the physical systems represented by the two potentials have the same characteristic energies, apart from a possible zero-energy ground state.
In theoretical physics, a super-Poincaré algebra is an extension of the Poincaré algebra to incorporate supersymmetry, a relation between bosons and fermions. They are examples of supersymmetry algebras, and are Lie superalgebras. Thus a super-Poincaré algebra is a Z2-graded vector space with a graded Lie bracket such that the even part is a Lie algebra containing the Poincaré algebra, and the odd part is built from spinors on which there is an anticommutation relation with values in the even part.
In theoretical physics, supersymmetric quantum mechanics is an area of research where supersymmetry are applied to the simpler setting of plain quantum mechanics, rather than quantum field theory. Supersymmetric quantum mechanics has found applications outside of high-energy physics, such as providing new methods to solve quantum mechanical problems, providing useful extensions to the WKB approximation, and statistical mechanics.
In theoretical physics a quantum field theory is said to have a parity anomaly if its classical action is invariant under a change of parity of the universe, but the quantum theory is not invariant.
In quantum field theory, Seiberg duality, conjectured by Nathan Seiberg in 1994, is an S-duality relating two different supersymmetric QCDs. The two theories are not identical, but they agree at low energies. More precisely under a renormalization group flow they flow to the same IR fixed point, and so are in the same universality class. It is an extension to nonabelian gauge theories with N=1 supersymmetry of Montonen–Olive duality in N=4 theories and electromagnetic duality in abelian theories.
In theoretical physics, there are many theories with supersymmetry (SUSY) which also have internal gauge symmetries. Supersymmetric gauge theory generalizes this notion.
In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory.
In theoretical physics, topological string theory is a version of string theory. Topological string theory appeared in papers by theoretical physicists, such as Edward Witten and Cumrun Vafa, by analogy with Witten's earlier idea of topological quantum field theory.
Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings.
In theoretical physics, super QCD is a supersymmetric gauge theory which resembles quantum chromodynamics (QCD) but contains additional particles and interactions which render it supersymmetric.
Higher-dimensional supergravity is the supersymmetric generalization of general relativity in higher dimensions. Supergravity can be formulated in any number of dimensions up to eleven. This article focuses upon supergravity (SUGRA) in greater than four dimensions.
This page is a glossary of terms in string theory, including related areas such as supergravity, supersymmetry, and high energy physics.
Peter Christopher West, born on 4 December 1951, is a British theoretical physicist at King's College, London and a fellow of the Royal Society.