This article needs additional citations for verification .(July 2023) |
String theory |
---|
Fundamental objects |
Perturbative theory |
Non-perturbative results |
Phenomenology |
Mathematics |
In physics, a string is a physical entity postulated in string theory and related subjects. Unlike elementary particles, which are zero-dimensional or point-like by definition, strings are one-dimensional extended entities. Researchers often have an interest in string theories because theories in which the fundamental entities are strings rather than point particles automatically have many properties that some physicists expect to hold in a fundamental theory of physics. Most notably, a theory of strings that evolve and interact according to the rules of quantum mechanics will automatically describe quantum gravity.[ citation needed ]
This article needs additional citations for verification .(April 2024) |
In string theory, the strings may be open (forming a segment with two endpoints) or closed (forming a loop like a circle) and may have other special properties. [1] Prior to 1995, there were five known versions of string theory incorporating the idea of supersymmetry (these five are known as superstring theories) and two versions without supersymmetry known as bosonic string theories, which differed in the type of strings and in other aspects. Today these different superstring theories are thought to arise as different limiting cases of a single theory called M-theory.
In string theories of particle physics, the strings are very tiny; much smaller than can be observed in today's particle accelerators. The characteristic length scale of strings is typically on the order of the Planck length, about 10−35 meter, the scale at which the effects of quantum gravity are believed to become significant. Therefore on much larger length scales, such as the scales visible in physics laboratories, such entities would appear to be zero-dimensional point particles. Strings are able to vibrate as harmonic oscillators, and different vibrational states of the same string are interpreted as different types of particles. In string theories, strings vibrating at different frequencies constitute the multiple fundamental particles found in the current Standard Model of particle physics. Strings are also sometimes studied in nuclear physics where they are used to model flux tubes.
As the string propagates through spacetime, a string sweeps out a two-dimensional surface called its worldsheet. This is analogous to the one-dimensional worldline traced out by a point particle. The physics of a string is described by means of a two-dimensional conformal field theory associated with the worldsheet. The formalism of two-dimensional conformal field theory also has many applications outside of string theory, for example in condensed matter physics and parts of pure mathematics.
Strings can be either open or closed. A closed string is a string that has no end-points, and therefore is topologically equivalent to a circle. An open string, on the other hand, has two end-points and is topologically equivalent to a line interval. Not all string theories contain open strings, but every theory must contain closed strings, as interactions between open strings can always result in closed strings.
The oldest superstring theory containing open strings was type I string theory. However, the developments in string theory in the 1990s have shown that the open strings should always be thought of as ending on a new physical degree of freedom called D-branes, and the spectrum of possibilities for open strings has significantly increased.
Open and closed strings are generally associated with characteristic vibrational modes. One of the vibration modes of a closed string can be identified as the graviton. In certain string theories, the lowest-energy vibration of an open string is a tachyon and can undergo tachyon condensation. Other vibrational modes of open strings exhibit the properties of photons and gluons.
Strings can also possess an orientation, which can be thought of as an internal "arrow" that distinguishes the string from one with the opposite orientation. By contrast, an unoriented string is one with no such arrow on it.
M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witten's announcement initiated a flurry of research activity known as the second superstring revolution. Prior to Witten's announcement, string theorists had identified five versions of superstring theory. Although these theories initially appeared to be very different, work by many physicists showed that the theories were related in intricate and nontrivial ways. Physicists found that apparently distinct theories could be unified by mathematical transformations called S-duality and T-duality. Witten's conjecture was based in part on the existence of these dualities and in part on the relationship of the string theories to a field theory called eleven-dimensional supergravity.
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity.
Supersymmetry is a theoretical framework in physics that suggests the existence of a symmetry between particles with integer spin (bosons) and particles with half-integer spin (fermions). It proposes that for every known particle, there exists a partner particle with different spin properties. There have been multiple experiments on supersymmetry that have failed to provide evidence that it exists in nature. If evidence is found, supersymmetry could help explain certain phenomena, such as the nature of dark matter and the hierarchy problem in particle physics.
String field theory (SFT) is a formalism in string theory in which the dynamics of relativistic strings is reformulated in the language of quantum field theory. This is accomplished at the level of perturbation theory by finding a collection of vertices for joining and splitting strings, as well as string propagators, that give a Feynman diagram-like expansion for string scattering amplitudes. In most string field theories, this expansion is encoded by a classical action found by second-quantizing the free string and adding interaction terms. As is usually the case in second quantization, a classical field configuration of the second-quantized theory is given by a wave function in the original theory. In the case of string field theory, this implies that a classical configuration, usually called the string field, is given by an element of the free string Fock space.
Cosmic strings are hypothetical 1-dimensional topological defects which may have formed during a symmetry-breaking phase transition in the early universe when the topology of the vacuum manifold associated to this symmetry breaking was not simply connected. Their existence was first contemplated by the theoretical physicist Tom Kibble in the 1970s.
In string theory, D-branes, short for Dirichlet membrane, are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes are typically classified by their spatial dimension, which is indicated by a number written after the D. A D0-brane is a single point, a D1-brane is a line, a D2-brane is a plane, and a D25-brane fills the highest-dimensional space considered in bosonic string theory. There are also instantonic D(–1)-branes, which are localized in both space and time.
Tachyon condensation is a process in particle physics in which a system can lower its potential energy by spontaneously producing particles. The end result is a "condensate" of particles that fills the volume of the system. Tachyon condensation is closely related to second-order phase transitions.
Bosonic string theory is the original version of string theory, developed in the late 1960s and named after Satyendra Nath Bose. It is so called because it contains only bosons in the spectrum.
In string theory, a worldsheet is a two-dimensional manifold which describes the embedding of a string in spacetime. The term was coined by Leonard Susskind as a direct generalization of the world line concept for a point particle in special and general relativity.
In theoretical physics, topological string theory is a version of string theory. Topological string theory appeared in papers by theoretical physicists, such as Edward Witten and Cumrun Vafa, by analogy with Witten's earlier idea of topological quantum field theory.
Many first principles in quantum field theory are explained, or get further insight, in string theory.
The history of string theory spans several decades of intense research including two superstring revolutions. Through the combined efforts of many researchers, string theory has developed into a broad and varied subject with connections to quantum gravity, particle and condensed matter physics, cosmology, and pure mathematics.
The Type 0 string theory is a less well-known model of string theory. It is a superstring theory in the sense that the worldsheet theory is supersymmetric. However, the spacetime spectrum is not supersymmetric and, in fact, does not contain any fermions at all. In dimensions greater than two, the ground state is a tachyon so the theory is unstable. These properties make it similar to the bosonic string and an unsuitable proposal for describing the world as we observe it, although a GSO projection does get rid of the tachyon and the even G-parity sector of the theory defines a stable string theory. The theory is used sometimes as a toy model for exploring concepts in string theory, notably closed string tachyon condensation. Some other recent interest has involved the two-dimensional Type 0 string which has a non-perturbatively stable matrix model description.
The non-critical string theory describes the relativistic string without enforcing the critical dimension. Although this allows the construction of a string theory in 4 spacetime dimensions, such a theory usually does not describe a Lorentz invariant background. However, there are recent developments which make possible Lorentz invariant quantization of string theory in 4-dimensional Minkowski space-time.
String duality is a class of symmetries in physics that link different string theories, theories which assume that the fundamental building blocks of the universe are strings instead of point particles.
Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings.
In physics, a tachyonic field, or simply tachyon, is a quantum field with an imaginary mass. Although tachyonic particles are a purely hypothetical concept that violate a number of essential physical principles, at least one field with imaginary mass, the Higgs field, is believed to exist. Under no circumstances do any excitations of tachyonic fields ever propagate faster than light—the presence or absence of a tachyonic (imaginary) mass has no effect on the maximum velocity of signals, and so unlike faster-than-light particles there is no violation of causality. Tachyonic fields play an important role in physics and are discussed in popular books.
This page is a glossary of terms in string theory, including related areas such as supergravity, supersymmetry, and high energy physics.
Supermembranes are hypothesized objects that live in the 11-dimensional theory called M-Theory and should also exist in eleven-dimensional supergravity. Supermembranes are a generalisation of superstrings to another dimension. Supermembranes are 2-dimensional surfaces. For example, they can be spherical or shaped like a torus. As in superstring theory the vibrations of the supermembranes correspond to different particles. Supermembranes also exhibit a symmetry called supersymmetry without which the vibrations would only correspond to bosons and not fermions.
In string theory, the Ramond–Neveu–Schwarz (RNS) formalism is an approach to formulating superstrings in which the worldsheet has explicit superconformal invariance but spacetime supersymmetry is hidden, in contrast to the Green–Schwarz formalism where the latter is explicit. It was originally developed by Pierre Ramond, André Neveu and John Schwarz in the RNS model in 1971, which gives rise to type II string theories and can also give type I string theory. Heterotic string theories can also be acquired through this formalism by using a different worldsheet action. There are various ways to quantize the string within this framework including light-cone quantization, old canonical quantization, and BRST quantization. A consistent string theory is only acquired if the spectrum of states is restricted through a procedure known as a GSO projection, with this projection being automatically present in the Green–Schwarz formalism.