Gary Horowitz

Last updated

Gary T. Horowitz (born April 14, 1955 in Washington, D.C.) is an American theoretical physicist who works on string theory and quantum gravity.

Contents

Biography

Horowitz studied at Princeton University (Bachelor 1976) and obtained his Ph.D. in 1979 at the University of Chicago with Robert Geroch. Subsequently, he was a post-doc at the University of California, Santa Barbara and Oxford University (as a NATO Fellow). In 1981-1983 he worked as an Einstein Fellow at the Institute for Advanced Study. He became an Assistant Professor in 1983, Associate Professor in 1986, and finally Professor in 1990 at the University of California at Santa Barbara.

Horowitz investigates gravitational phenomena, such as black holes, in string theory. In the 1990s, he worked with, among others, Andrew Strominger [1] and Joseph Polchinski showing that string theory provides a description of the quantum microstates of certain black holes (following earlier work of Strominger and Cumrun Vafa ). [2]

In 1985 Horowitz published an influential paper with Philip Candelas, Andrew Strominger and Edward Witten on the compactification of superstrings in Calabi-Yau spaces. [3] In the early 1990s, Horowitz and Strominger found black brane solutions in string theory. [4] Horowitz also works on the AdS/CFT correspondence and (together with Sean Hartnoll and Chris Herzog) discovered holographic superconductors. [5]

In 1982 Horowitz and M. Perry won first prize in the Gravity Research Foundation essay competition. From 1985 to 1989 he was a Sloan Fellow. In 1993 he was awarded the Xanthopoulos Prize. He has been a Fellow of the American Physical Society since 2001, [6] Member of the National Academy of Sciences since 2010, and Fellow of the American Academy of Arts and Sciences since 2013.

Selected papers

Related Research Articles

General relativity Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics, and where quantum effects cannot be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, and where the effects of gravity are strong, such as neutron stars.

Wormhole Hypothetical topological feature of spacetime

A wormhole is a speculative structure linking disparate points in spacetime, and is based on a special solution of the Einstein field equations.

Loop quantum gravity Theory of quantum gravity, merging quantum mechanics and general relativity

Loop quantum gravity (LQG) is a theory of quantum gravity, which aims to merge quantum mechanics and general relativity, incorporating matter of the Standard Model into the framework established for the pure quantum gravity case. It is an attempt to develop a quantum theory of gravity based directly on Einstein's geometric formulation rather than the treatment of gravity as a force. As a theory LQG postulates that the structure of space and time is composed of finite loops woven into an extremely fine fabric or network. These networks of loops are called spin networks. The evolution of a spin network, or spin foam, has a scale above the order of a Planck length, approximately 10−35 meters, and smaller scales are meaningless. Consequently, not just matter, but space itself, prefers an atomic structure.

No-hair theorem Black holes are characterized only by mass, charge, and spin

The no-hair theorem states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent externally observable classical parameters: mass, electric charge, and angular momentum. Other characteristics are uniquely determined by these three parameters, and all other information about the matter that formed a black hole or is falling into it "disappears" behind the black-hole event horizon and is therefore permanently inaccessible to external observers after the black hole "settles down". Physicist John Archibald Wheeler expressed this idea with the phrase "black holes have no hair", which was the origin of the name.

Doubly special relativity (DSR) – also called deformed special relativity or, by some, extra-special relativity – is a modified theory of special relativity in which there is not only an observer-independent maximum velocity, but also, an observer-independent maximum energy scale and/or a minimum length scale. This contrasts with other Lorentz-violating theories, such as the Standard-Model Extension, where Lorentz invariance is instead broken by the presence of a preferred frame. The main motivation for this theory is that the Planck energy should be the scale where as yet unknown quantum gravity effects become important and, due to invariance of physical laws, this scale should remain fixed in all inertial frames.

Black hole thermodynamics Area of study

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black-hole event horizons. As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.

Jorge Pullin is an American theoretical physicist known for his work on black hole collisions and quantum gravity. He is the Horace Hearne Chair in theoretical Physics at the Louisiana State University.

In particle physics, the hypothetical dilaton particle is a particle of a scalar field that appears in theories with extra dimensions when the volume of the compactified dimensions varies. It appears as a radion in Kaluza–Klein theory's compactifications of extra dimensions. In Brans–Dicke theory of gravity, Newton's constant is not presumed to be constant but instead 1/G is replaced by a scalar field and the associated particle is the dilaton.

Olaf Dreyer German physicist

Olaf Dreyer is a German theoretical physicist whose research interests include quantum gravity and the quantum measurement problem. Dreyer received his Ph.D. in quantum gravity in 2001 from the Pennsylvania State University under the direction of Abhay Ashtekar. Subsequently, he has held a postdoctoral fellowship at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, a Marie Curie Fellowship at Imperial College, London, and a postdoctoral fellowship at the Center for Theoretical Physics, Massachusetts Institute of Technology.

The Immirzi parameter is a numerical coefficient appearing in loop quantum gravity (LQG), a nonperturbative theory of quantum gravity. The Immirzi parameter measures the size of the quantum of area in Planck units. As a result, its value is currently fixed by matching the semiclassical black hole entropy, as calculated by Stephen Hawking, and the counting of microstates in loop quantum gravity.

Black hole information paradox Mystery of disappearance of information in a black hole

The black hole information paradox is a puzzle that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing — not even light — can escape. In the 1970s Stephen Hawking applied the rules of quantum mechanics to such systems and found that an isolated black hole would emit a form of radiation called Hawking radiation. Hawking also argued that the detailed form of the radiation would be independent of the initial state of the black hole and would depend only on its mass, electric charge and angular momentum. The information paradox appears when one considers a process in which a black hole is formed through a physical process and then evaporates away entirely through Hawking radiation. Hawking's calculation suggests that the final state of radiation would retain information only about the total mass, electric charge and angular momentum of the initial state. Since many different states can have the same mass, charge and angular momentum this suggests that many initial physical states could evolve into the same final state. Therefore, information about the details of the initial state would be permanently lost. However, this violates a core precept of both classical and quantum physics—that, in principle, the state of a system at one point in time should determine its value at any other time. Specifically, in quantum mechanics the state of the system is encoded by its wave function. The evolution of the wave function is determined by a unitary operator, and unitarity implies that the wave function at any instant of time can be used to determine the wave function either in the past or the future.

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

A ring singularity or ringularity is the gravitational singularity of a rotating black hole, or a Kerr black hole, that is shaped like a ring.

Helen Fay Dowker is a British physicist who is a current professor of theoretical physics at Imperial College London.

The BTZ black hole, named after Máximo Bañados, Claudio Teitelboim, and Jorge Zanelli, is a black hole solution for (2+1)-dimensional topological gravity with a negative cosmological constant.

Light front holography Technique used to determine mass of hadrons

In strong interaction physics, light front holography or light front holographic QCD is an approximate version of the theory of quantum chromodynamics (QCD) which results from mapping the gauge theory of QCD to a higher-dimensional anti-de Sitter space (AdS) inspired by the AdS/CFT correspondence proposed for string theory. This procedure makes it possible to find analytic solutions in situations where strong coupling occurs, improving predictions of the masses of hadrons and their internal structure revealed by high-energy accelerator experiments. The most widely used approach to finding approximate solutions to the QCD equations, lattice QCD, has had many successful applications; however, it is a numerical approach formulated in Euclidean space rather than physical Minkowski space-time.

Raphael Bousso is a theoretical physicist and cosmologist. He is a professor at the Berkeley Center for Theoretical Physics in the Department of Physics, UC Berkeley. He is known for the Bousso bound on the information content of the universe. With Joseph Polchinski, Bousso proposed the string theory landscape as a solution to the cosmological constant problem.

In theoretical physics, a dynamical horizon (DH) is a local description of evolving black-hole horizons. In the literature there exist two different mathematical formulations of DHs—the 2+2 formulation developed by Sean Hayward and the 3+1 formulation developed by Abhay Ashtekar and others. It provides a description of a black hole that is evolving. A related formalism, for black holes with zero influx, is an isolated horizon.

A black hole firewall is a hypothetical phenomenon where an observer falling into a black hole encounters high-energy quanta at the event horizon. The "firewall" phenomenon was proposed in 2012 by physicists Ahmed Almheiri, Donald Marolf, Joseph Polchinski, and James Sully as a possible solution to an apparent inconsistency in black hole complementarity. The proposal is sometimes referred to as the AMPS firewall, an acronym for the names of the authors of the 2012 paper. The potential inconsistency pointed out by AMPS had been pointed out earlier by Samir Mathur who used the argument in favour of the fuzzball proposal. The use of a firewall to resolve this inconsistency remains controversial, with physicists divided as to the solution to the paradox.

References

  1. Horowitz, Gary; Strominger, Andrew (1996). "Counting States of Near-Extremal Black Holes". Phys. Rev. Lett. 77 (12): 2368–2371. arXiv: hep-th/9602051 . Bibcode:1996PhRvL..77.2368H. doi:10.1103/PhysRevLett.77.2368. PMID   10061936. S2CID   633266.
  2. For general black holes, one can only show the proportionality of the logarithm of the number of string states to the surface area (which corresponds to the entropy), Horowitz, Gary T.; Polchinski, Joseph (1997). "Correspondence principle for black holes and strings". Physical Review D. 55 (10): 6189–6197. arXiv: hep-th/9612146 . Bibcode:1997PhRvD..55.6189H. doi:10.1103/PhysRevD.55.6189. S2CID   13134692.
  3. Candelas, P.; Horowitz, Gary T.; Strominger, Andrew; Witten, Edward (1985). "Vacuum configurations for superstrings". Nuclear Physics B. 258: 46–74. Bibcode:1985NuPhB.258...46C. doi:10.1016/0550-3213(85)90602-9.
  4. Horowitz, Gary T.; Strominger, Andrew (1991). "Black strings and p-branes". Nuclear Physics B. 360 (1): 197–209. Bibcode:1991NuPhB.360..197H. doi:10.1016/0550-3213(91)90440-9.
  5. Horowitz, Gary T. (2011). "Introduction to Holographic Superconductors". From Gravity to Thermal Gauge Theories: The AdS/CFT Correspondence. Lecture Notes in Physics. Vol. 828. pp. 313–347. arXiv: 1002.1722 . doi:10.1007/978-3-642-04864-7_10. ISBN   978-3-642-04863-0. S2CID   118582465.
  6. "APS Fellow Archive". APS. Retrieved 18 September 2020.