Brane

Last updated

In string theory and related theories such as supergravity theories, a brane is a physical object that generalizes the notion of a zero-dimensional point particle, a one-dimensional string, or a two-dimensional membrane to higher-dimensional objects. Branes are dynamical objects which can propagate through spacetime according to the rules of quantum mechanics. They have mass and can have other attributes such as charge.

Contents

Mathematically, branes can be represented within categories, and are studied in pure mathematics for insight into homological mirror symmetry and noncommutative geometry.

p-branes

A point particle is a 0-brane, of dimension zero; a string, named after vibrating musical strings, is a 1-brane; a membrane, named after vibrating membranes such as drumheads, is a 2-brane. [1] The corresponding object of arbitrary dimension p is called a p-brane, a term coined by M. J. Duff et al. in 1988. [2]

A p-brane sweeps out a (p+1)-dimensional volume in spacetime called its worldvolume. Physicists often study fields analogous to the electromagnetic field, which live on the worldvolume of a brane. [3]

D-branes

Open strings attached to a pair of D-branes D3-brane et D2-brane.PNG
Open strings attached to a pair of D-branes

In string theory, a string may be open (forming a segment with two endpoints) or closed (forming a closed loop). D-branes are an important class of branes that arise when one considers open strings. As an open string propagates through spacetime, its endpoints are required to lie on a D-brane. The letter "D" in D-brane refers to the Dirichlet boundary condition, which the D-brane satisfies. [4]

One crucial point about D-branes is that the dynamics on the D-brane worldvolume is described by a gauge theory, a kind of highly symmetric physical theory which is also used to describe the behavior of elementary particles in the standard model of particle physics. This connection has led to important insights into gauge theory and quantum field theory. For example, it led to the discovery of the AdS/CFT correspondence, a theoretical tool that physicists use to translate difficult problems in gauge theory into more mathematically tractable problems in string theory. [5]

Categorical description

Mathematically, branes can be described using the notion of a category. [6] This is a mathematical structure consisting of objects, and for any pair of objects, a set of morphisms between them. In most examples, the objects are mathematical structures (such as sets, vector spaces, or topological spaces) and the morphisms are functions between these structures. [7] One can likewise consider categories where the objects are D-branes and the morphisms between two branes and are states of open strings stretched between and . [8]

A cross section of a Calabi-Yau manifold Calabi yau.jpg
A cross section of a Calabi–Yau manifold

In one version of string theory known as the topological B-model, the D-branes are complex submanifolds of certain six-dimensional shapes called Calabi–Yau manifolds, together with additional data that arise physically from having charges at the endpoints of strings. [9] Intuitively, one can think of a submanifold as a surface embedded inside of a Calabi–Yau manifold, although submanifolds can also exist in dimensions different from two. [10] In mathematical language, the category having these branes as its objects is known as the derived category of coherent sheaves on the Calabi–Yau. [11] In another version of string theory called the topological A-model, the D-branes can again be viewed as submanifolds of a Calabi–Yau manifold. Roughly speaking, they are what mathematicians call special Lagrangian submanifolds. [12] This means, among other things, that they have half the dimension of the space in which they sit, and they are length-, area-, or volume-minimizing. [13] The category having these branes as its objects is called the Fukaya category. [14]

The derived category of coherent sheaves is constructed using tools from complex geometry, a branch of mathematics that describes geometric shapes in algebraic terms and solves geometric problems using algebraic equations. [15] On the other hand, the Fukaya category is constructed using symplectic geometry, a branch of mathematics that arose from studies of classical physics. Symplectic geometry studies spaces equipped with a symplectic form, a mathematical tool that can be used to compute area in two-dimensional examples. [16]

The homological mirror symmetry conjecture of Maxim Kontsevich states that the derived category of coherent sheaves on one Calabi–Yau manifold is equivalent in a certain sense to the Fukaya category of a completely different Calabi–Yau manifold. [17] This equivalence provides an unexpected bridge between two branches of geometry, namely complex and symplectic geometry. [18]

See also

FieldSubfieldsMajor theoriesConcepts
Nuclear and particle physics Nuclear physics, Nuclear astrophysics, Particle physics, Astroparticle physics, Particle physics phenomenology Standard Model, Quantum field theory, Quantum electrodynamics, Quantum chromodynamics, Electroweak theory, Effective field theory, Lattice field theory, Gauge theory, Supersymmetry, Grand Unified Theory, Superstring theory, M-theory, AdS/CFT correspondence Fundamental interaction (gravitational, electromagnetic, weak, strong), Elementary particle, Spin, Antimatter, Spontaneous symmetry breaking, Neutrino oscillation, Seesaw mechanism, Brane, String, Quantum gravity, Theory of everything, Vacuum energy
Atomic, molecular, and optical physics Atomic physics, Molecular physics, Atomic and molecular astrophysics, Chemical physics, Optics, Photonics Quantum optics, Quantum chemistry, Quantum information science Photon, Atom, Molecule, Diffraction, Electromagnetic radiation, Laser, Polarization (waves), Spectral line, Casimir effect
Condensed matter physics Solid-state physics, High-pressure physics, Low-temperature physics, Surface physics, Nanoscale and mesoscopic physics, Polymer physics BCS theory, Bloch's theorem, Density functional theory, Fermi gas, Fermi liquid theory, Many-body theory, Statistical mechanics Phases (gas, liquid, solid), Bose–Einstein condensate, Electrical conduction, Phonon, Magnetism, Self-organization, Semiconductor, superconductor, superfluidity, Spin,
Astrophysics Astronomy, Astrometry, Cosmology, Gravitation physics, High-energy astrophysics, Planetary astrophysics, Plasma physics, Solar physics, Space physics, Stellar astrophysics Big Bang, Cosmic inflation, General relativity, Newton's law of universal gravitation, Lambda-CDM model, Magnetohydrodynamics Black hole, Cosmic background radiation, Cosmic string, Cosmos, Dark energy, Dark matter, Galaxy, Gravity, Gravitational radiation, Gravitational singularity, Planet, Solar System, Star, Supernova, Universe
Applied physics Accelerator physics, Acoustics, Agrophysics, Atmospheric physics, Biophysics, Chemical physics, Communication physics, Econophysics, Engineering physics, Fluid dynamics, Geophysics, Laser physics, Materials physics, Medical physics, Nanotechnology, Optics, Optoelectronics, Photonics, Photovoltaics, Physical chemistry, Physical oceanography, Physics of computation, Plasma physics, Solid-state devices, Quantum chemistry, Quantum electronics, Quantum information science, Vehicle dynamics

Citations

  1. Moore 2005, p. 214
  2. M. J. Duff, T. Inami, C. N. Pope, E. Sezgin  [ de ], and K. S. Stelle, "Semiclassical quantization of the supermembrane", Nucl. Phys.B297 (1988), 515.
  3. Moore 2005, p. 214
  4. Moore 2005, p. 215
  5. Moore 2005, p. 215
  6. Aspinwall et al. 2009
  7. A basic reference on category theory is Mac Lane 1998.
  8. Zaslow 2008, p. 536
  9. Zaslow 2008, p. 536
  10. Yau and Nadis 2010, p. 165
  11. Aspinwal et al. 2009, p. 575
  12. Aspinwal et al. 2009, p. 575
  13. Yau and Nadis 2010, p. 175
  14. Aspinwal et al. 2009, p. 575
  15. Yau and Nadis 2010, pp. 180–1
  16. Zaslow 2008, p. 531
  17. Aspinwall et al. 2009, p. 616
  18. Yau and Nadis 2010, p. 181

General and cited references

Related Research Articles

M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witten's announcement initiated a flurry of research activity known as the second superstring revolution. Prior to Witten's announcement, string theorists had identified five versions of superstring theory. Although these theories initially appeared to be very different, work by many physicists showed that the theories were related in intricate and nontrivial ways. Physicists found that apparently distinct theories could be unified by mathematical transformations called S-duality and T-duality. Witten's conjecture was based in part on the existence of these dualities and in part on the relationship of the string theories to a field theory called eleven-dimensional supergravity.

In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity.

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.

<span class="mw-page-title-main">Shing-Tung Yau</span> Chinese mathematician

Shing-Tung Yau is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau retired from Harvard to become a professor of mathematics at Tsinghua University.

In theoretical physics, T-duality is an equivalence of two physical theories, which may be either quantum field theories or string theories. In the simplest example of this relationship, one of the theories describes strings propagating in a spacetime shaped like a circle of some radius , while the other theory describes strings propagating on a spacetime shaped like a circle of radius proportional to . The idea of T-duality was first noted by Bala Sathiapalan in an obscure paper in 1987. The two T-dual theories are equivalent in the sense that all observable quantities in one description are identified with quantities in the dual description. For example, momentum in one description takes discrete values and is equal to the number of times the string winds around the circle in the dual description.

In algebraic geometry and theoretical physics, mirror symmetry is a relationship between geometric objects called Calabi–Yau manifolds. The term refers to a situation where two Calabi–Yau manifolds look very different geometrically but are nevertheless equivalent when employed as extra dimensions of string theory.

Homological mirror symmetry is a mathematical conjecture made by Maxim Kontsevich. It seeks a systematic mathematical explanation for a phenomenon called mirror symmetry first observed by physicists studying string theory.

In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds.

In theoretical physics, topological string theory is a version of string theory. Topological string theory appeared in papers by theoretical physicists, such as Edward Witten and Cumrun Vafa, by analogy with Witten's earlier idea of topological quantum field theory.

The Geometry Festival is an annual mathematics conference held in the United States.

The SYZ conjecture is an attempt to understand the mirror symmetry conjecture, an issue in theoretical physics and mathematics. The original conjecture was proposed in a paper by Strominger, Yau, and Zaslow, entitled "Mirror Symmetry is T-duality".

Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings.

<span class="mw-page-title-main">Richard Thomas (mathematician)</span>

Richard Paul Winsley Thomas is a British mathematician working in several areas of geometry. He is a professor at Imperial College London. He studies moduli problems in algebraic geometry, and ‘mirror symmetry’—a phenomenon in pure mathematics predicted by string theory in theoretical physics.

This page is a glossary of terms in string theory, including related areas such as supergravity, supersymmetry, and high energy physics.

<span class="mw-page-title-main">Kenji Fukaya</span> Japanese mathematician

Kenji Fukaya is a Japanese mathematician known for his work in symplectic geometry and Riemannian geometry. His many fundamental contributions to mathematics include the discovery of the Fukaya category. He is a permanent faculty member at the Simons Center for Geometry and Physics and a professor of mathematics at Stony Brook University.

<span class="mw-page-title-main">Mark Gross (mathematician)</span> American mathematician (born 1965)

Mark William Gross is an American mathematician, specializing in differential geometry, algebraic geometry, and mirror symmetry.

Paul Stephen Aspinwall is a British theoretical physicist and mathematician, who works on string theory and also algebraic geometry.

In mathematics and theoretical physics, and especially gauge theory, the deformed Hermitian Yang–Mills (dHYM) equation is a differential equation describing the equations of motion for a D-brane in the B-model of string theory. The equation was derived by Mariño-Minasian-Moore-Strominger in the case of Abelian gauge group, and by Leung–Yau–Zaslow using mirror symmetry from the corresponding equations of motion for D-branes in the A-model of string theory.

In mathematics, and especially symplectic geometry, the Thomas–Yau conjecture asks for the existence of a stability condition, similar to those which appear in algebraic geometry, which guarantees the existence of a solution to the special Lagrangian equation inside a Hamiltonian isotopy class of Lagrangian submanifolds. In particular the conjecture contains two difficulties: first it asks what a suitable stability condition might be, and secondly if one can prove stability of an isotopy class if and only if it contains a special Lagrangian representative.