In mathematics, the geometric Langlands correspondence relates algebraic geometry and representation theory. It is a reformulation of the Langlands correspondence obtained by replacing the number fields appearing in the original number theoretic version by function fields and applying techniques from algebraic geometry. [1] The geometric Langlands conjecture asserts the existence of the geometric Langlands correspondence.
The existence of the geometric Langlands correspondence in the specific case of general linear groups over function fields was proven by Laurent Lafforgue in 2002, where it follows as a consequence of Lafforgue's theorem. [2]
In mathematics, the classical Langlands correspondence is a collection of results and conjectures relating number theory and representation theory. Formulated by Robert Langlands in the late 1960s, the Langlands correspondence is related to important conjectures in number theory such as the Taniyama–Shimura conjecture, which includes Fermat's Last Theorem as a special case. [1]
Langlands correspondences can be formulated for global fields (as well as local fields), which are classified into number fields or global function fields. Establishing the classical Langlands correspondence, for number fields, has proven extremely difficult. As a result, some mathematicians posed the geometric Langlands correspondence for global function fields, which in some sense have proven easier to deal with. [3]
The geometric Langlands conjecture for general linear groups over a function field was formulated by Vladimir Drinfeld and Gérard Laumon in 1987. [4] [5]
The geometric Langlands conjecture was proved for by Pierre Deligne and for by Drinfeld in 1983. [6] [7]
Laurent Lafforgue proved the geometric Langlands conjecture for over a function field in 2002. [2]
A claimed proof of the categorical unramified geometric Langlands conjecture was announced on May 6, 2024 by a team of mathematicians including Dennis Gaitsgory. [8] [9] The claimed proof is contained in more than 1,000 pages across five papers and has been called "so complex that almost no one can explain it". Even conveying the significance of the result to other mathematicians was described as "very hard, almost impossible" by Drinfeld. [10]
In a paper from 2007, Anton Kapustin and Edward Witten described a connection between the geometric Langlands correspondence and S-duality, a property of certain quantum field theories. [11]
In 2018, when accepting the Abel Prize, Langlands delivered a paper reformulating the geometric program using tools similar to his original Langlands correspondence. [12] [13] Langlands' ideas were further developed by Etingof, Frenkel, and Kazhdan. [14]
{{cite arXiv}}
: CS1 maint: multiple names: authors list (link)Robert Phelan Langlands, is a Canadian mathematician. He is best known as the founder of the Langlands program, a vast web of conjectures and results connecting representation theory and automorphic forms to the study of Galois groups in number theory, for which he received the 2018 Abel Prize. He is emeritus professor and occupied Albert Einstein's office at the Institute for Advanced Study in Princeton, until 2020 when he retired.
Edward Witten is an American theoretical physicist known for his contributions to string theory, topological quantum field theory, and various areas of mathematics. He is a professor emeritus in the school of natural sciences at the Institute for Advanced Study in Princeton. Witten is a researcher in string theory, quantum gravity, supersymmetric quantum field theories, and other areas of mathematical physics. Witten's work has also significantly impacted pure mathematics. In 1990, he became the first physicist to be awarded a Fields Medal by the International Mathematical Union, for his mathematical insights in physics, such as his 1981 proof of the positive energy theorem in general relativity, and his interpretation of the Jones invariants of knots as Feynman integrals. He is considered the practical founder of M-theory.
Laurent Lafforgue is a French mathematician. He has made outstanding contributions to Langlands' program in the fields of number theory and analysis, and in particular proved the Langlands conjectures for the automorphism group of a function field. The crucial contribution by Lafforgue to solve this question is the construction of compactifications of certain moduli stacks of shtukas. The proof was the result of more than six years of concentrated efforts.
In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and consequential conjectures about connections between number theory and geometry. Proposed by Robert Langlands, it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics."
Pierre René, Viscount Deligne is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord Prize, and 1978 Fields Medal.
In theoretical physics, S-duality is an equivalence of two physical theories, which may be either quantum field theories or string theories. S-duality is useful for doing calculations in theoretical physics because it relates a theory in which calculations are difficult to a theory in which they are easier.
In mathematics, the Ramanujan conjecture, due to Srinivasa Ramanujan (1916, p. 176), states that Ramanujan's tau function given by the Fourier coefficients τ(n) of the cusp form Δ(z) of weight 12
Vladimir Gershonovich Drinfeld, surname also romanized as Drinfel'd, is a mathematician from the former USSR, who emigrated to the United States and is currently working at the University of Chicago.
In mathematics, a Drinfeld module is roughly a special kind of module over a ring of functions on a curve over a finite field, generalizing the Carlitz module. Loosely speaking, they provide a function field analogue of complex multiplication theory. A shtuka is a sort of generalization of a Drinfeld module, consisting roughly of a vector bundle over a curve, together with some extra structure identifying a "Frobenius twist" of the bundle with a "modification" of it.
In mathematics, the local Langlands conjectures, introduced by Robert Langlands, are part of the Langlands program. They describe a correspondence between the complex representations of a reductive algebraic group G over a local field F, and representations of the Langlands group of F into the L-group of G. This correspondence is not a bijection in general. The conjectures can be thought of as a generalization of local class field theory from abelian Galois groups to non-abelian Galois groups.
In mathematics, the Arthur–Selberg trace formula is a generalization of the Selberg trace formula from the group SL2 to arbitrary reductive groups over global fields, developed by James Arthur in a long series of papers from 1974 to 2003. It describes the character of the representation of G(A) on the discrete part L2
0(G(F)\G(A)) of L2(G(F)\G(A)) in terms of geometric data, where G is a reductive algebraic group defined over a global field F and A is the ring of adeles of F.
Gérard Laumon is a French mathematician working in number theory and the Langlands program.
In the mathematical theory of automorphic forms, the fundamental lemma relates orbital integrals on a reductive group over a local field to stable orbital integrals on its endoscopic groups. It was conjectured by Robert Langlands in the course of developing the Langlands program. The fundamental lemma was proved by Gérard Laumon and Ngô Bảo Châu in the case of unitary groups and then by Ngô (2010) for general reductive groups, building on a series of important reductions made by Jean-Loup Waldspurger to the case of Lie algebras. Time magazine placed Ngô's proof on the list of the "Top 10 scientific discoveries of 2009". In 2010, Ngô was awarded the Fields Medal for this proof.
Edward Vladimirovich Frenkel is a Russian-American mathematician working in representation theory, algebraic geometry, and mathematical physics. He is a professor of mathematics at the University of California, Berkeley.
Vincent Lafforgue is a French mathematician who is active in algebraic geometry, especially in the Langlands program, and a CNRS "Directeur de Recherches" at the Institute Fourier in Grenoble. He is the younger brother of Fields Medalist Laurent Lafforgue.
In mathematics, Lafforgue's theorem, due to Laurent Lafforgue, completes the Langlands program for general linear groups over algebraic function fields, by giving a correspondence between automorphic forms on these groups and representations of Galois groups.
Alexander Nikolaevich Varchenko is a Soviet and Russian mathematician working in geometry, topology, combinatorics and mathematical physics.
Xinwen Zhu is a Chinese mathematician and professor at Stanford University. His work deals primarily with geometric representation theory and in particular the Langlands program, tying number theory to algebraic geometry and quantum physics.
Kari Kaleva Vilonen is a Finnish mathematician, specializing in geometric representation theory. He is currently a professor at the University of Melbourne.
Laurent Fargues is a French mathematician working in number theory and arithmetic geometry.