Orientifold

Last updated

In theoretical physics orientifold is a generalization of the notion of orbifold, proposed by Augusto Sagnotti in 1987. The novelty is that in the case of string theory the non-trivial element(s) of the orbifold group includes the reversal of the orientation of the string. Orientifolding therefore produces unoriented strings—strings that carry no "arrow" and whose two opposite orientations are equivalent. Type I string theory is the simplest example of such a theory and can be obtained by orientifolding type IIB string theory.

Contents

In mathematical terms, given a smooth manifold , two discrete, freely acting, groups and and the worldsheet parity operator (such that ) an orientifold is expressed as the quotient space . If is empty, then the quotient space is an orbifold. If is not empty, then it is an orientifold.

Application to string theory

In string theory is the compact space formed by rolling up the theory's extra dimensions, specifically a six-dimensional Calabi–Yau space. The simplest viable compact spaces are those formed by modifying a torus.

Supersymmetry breaking

The six dimensions take the form of a Calabi–Yau for reasons of partially breaking the supersymmetry of the string theory to make it more phenomenologically viable. The Type II string theories have 32 real supercharges, and compactifying on a six-dimensional torus leaves them all unbroken. Compactifying on a more general Calabi–Yau sixfold, 3/4 of the supersymmetry is removed to yield a four-dimensional theory with 8 real supercharges (N=2). To break this further to the only non-trivial phenomenologically viable supersymmetry, N=1, half of the supersymmetry generators must be projected out and this is achieved by applying the orientifold projection.

Effect on field content

A simpler alternative to using Calabi–Yaus to break to N=2 is to use an orbifold originally formed from a torus. In such cases it is simpler to examine the symmetry group associated to the space as the group is given in the definition of the space.

The orbifold group is restricted to those groups which work crystallographically on the torus lattice, [1] i.e. lattice preserving. is generated by an involution , not to be confused with the parameter signifying position along the length of a string. The involution acts on the holomorphic 3-form (again, not to be confused with the parity operator above) in different ways depending on the particular string formulation being used. [2]

The locus where the orientifold action reduces to the change of the string orientation is called the orientifold plane. The involution leaves the large dimensions of space-time unaffected and so orientifolds can have O-planes of at least dimension 3. In the case of it is possible that all spatial dimensions are left unchanged and O9 planes can exist. The orientifold plane in type I string theory is the spacetime-filling O9-plane.

More generally, one can consider orientifold Op-planes where the dimension p is counted in analogy with Dp-branes. O-planes and D-branes can be used within the same construction and generally carry opposite tension to one another.

However, unlike D-branes, O-planes are not dynamical. They are defined entirely by the action of the involution, not by string boundary conditions as D-branes are. Both O-planes and D-branes must be taken into account when computing tadpole constraints.

The involution also acts on the complex structure (1,1)-form J

This has the result that the number of moduli parameterising the space is reduced. Since is an involution, it has eigenvalues . The (1,1)-form basis , with dimension (as defined by the Hodge diamond of the orientifold's cohomology) is written in such a way that each basis form has definite sign under . Since moduli are defined by and J must transform as listed above under , only those moduli paired with 2-form basis elements of the correct parity under survive. Therefore, creates a splitting of the cohomology as and the number of moduli used to describe the orientifold is, in general, less than the number of moduli used to describe the orbifold used to construct the orientifold. [3] It is important to note that although the orientifold projects out half of the supersymmetry generators the number of moduli it projects out can vary from space to space. In some cases , in that all of the (1-1)-forms have the same parity under the orientifold projection. In such cases the way in which the different supersymmetry content enters into the moduli behaviour is through the flux dependent scalar potential the moduli experience, the N=1 case is different from the N=2 case.

Notes

  1. Lust; Reffert; Schulgin; Stieberger (2007). "Moduli Stabilization in Type IIB Orientifolds, Lust et al". Nuclear Physics B . 766 (1): 68–149. arXiv: hep-th/0506090 . Bibcode:2007NuPhB.766...68L. doi:10.1016/j.nuclphysb.2006.12.018. S2CID   119482115.
  2. Aldazabal; Camara; Font; Ibanez (2006). "More Dual Fluxes and Moduli Fixing, Font et al". Journal of High Energy Physics . 2006 (5): 070. arXiv: hep-th/0602089 . Bibcode:2006JHEP...05..070A. doi:10.1088/1126-6708/2006/05/070. S2CID   15824859.
  3. Matthias Ihl; Daniel Robbins; Timm Wrase (2007). "Toroidal Orientifolds in IIA with General NS-NS Fluxes". Journal of High Energy Physics . 2007 (8): 043. arXiv: 0705.3410 . Bibcode:2007JHEP...08..043I. doi:10.1088/1126-6708/2007/08/043. S2CID   15561489.

Related Research Articles

<span class="mw-page-title-main">Calabi–Yau manifold</span> Riemannian manifold with SU(n) holonomy

In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring theory, the extra dimensions of spacetime are sometimes conjectured to take the form of a 6-dimensional Calabi–Yau manifold, which led to the idea of mirror symmetry. Their name was coined by Candelas et al. (1985), after Eugenio Calabi who first conjectured that such surfaces might exist, and Shing-Tung Yau (1978) who proved the Calabi conjecture.

In the mathematical disciplines of topology and geometry, an orbifold is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space.

In physics, Ginzburg–Landau theory, often called Landau–Ginzburg theory, named after Vitaly Ginzburg and Lev Landau, is a mathematical physical theory used to describe superconductivity. In its initial form, it was postulated as a phenomenological model which could describe type-I superconductors without examining their microscopic properties. One GL-type superconductor is the famous YBCO, and generally all cuprates.

In theoretical physics, T-duality is an equivalence of two physical theories, which may be either quantum field theories or string theories. In the simplest example of this relationship, one of the theories describes strings propagating in a spacetime shaped like a circle of some radius , while the other theory describes strings propagating on a spacetime shaped like a circle of radius proportional to . The idea of T-duality was first noted by Bala Sathiapalan in an obscure paper in 1987. The two T-dual theories are equivalent in the sense that all observable quantities in one description are identified with quantities in the dual description. For example, momentum in one description takes discrete values and is equal to the number of times the string winds around the circle in the dual description.

<span class="mw-page-title-main">Supergravity</span> Modern theory of gravitation that combines supersymmetry and general relativity

In theoretical physics, supergravity is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way.

In theoretical physics, type I string theory is one of five consistent supersymmetric string theories in ten dimensions. It is the only one whose strings are unoriented and the only one which contains not only closed strings, but also open strings.

In theoretical physics, type II string theory is a unified term that includes both type IIA strings and type IIB strings theories. Type II string theory accounts for two of the five consistent superstring theories in ten dimensions. Both theories have extended supersymmetry which is maximal amount of supersymmetry — namely 32 supercharges — in ten dimensions. Both theories are based on oriented closed strings. On the worldsheet, they differ only in the choice of GSO projection.

<span class="mw-page-title-main">Compactification (physics)</span> Technique in theoretical physics

In theoretical physics, compactification means changing a theory with respect to one of its space-time dimensions. Instead of having a theory with this dimension being infinite, one changes the theory so that this dimension has a finite length, and may also be periodic.

In heterotic string theory, the Strominger's equations are the set of equations that are necessary and sufficient conditions for spacetime supersymmetry. It is derived by requiring the 4-dimensional spacetime to be maximally symmetric, and adding a warp factor on the internal 6-dimensional manifold.

In mathematics, a quintic threefold is a 3-dimensional hypersurface of degree 5 in 4-dimensional projective space . Non-singular quintic threefolds are Calabi–Yau manifolds.

In mathematics, specifically algebraic geometry, Donaldson–Thomas theory is the theory of Donaldson–Thomas invariants. Given a compact moduli space of sheaves on a Calabi–Yau threefold, its Donaldson–Thomas invariant is the virtual number of its points, i.e., the integral of the cohomology class 1 against the virtual fundamental class. The Donaldson–Thomas invariant is a holomorphic analogue of the Casson invariant. The invariants were introduced by Simon Donaldson and Richard Thomas (1998). Donaldson–Thomas invariants have close connections to Gromov–Witten invariants of algebraic three-folds and the theory of stable pairs due to Rahul Pandharipande and Thomas.

In mathematics a translation surface is a surface obtained from identifying the sides of a polygon in the Euclidean plane by translations. An equivalent definition is a Riemann surface together with a holomorphic 1-form.

This page is a glossary of terms in string theory, including related areas such as supergravity, supersymmetry, and high energy physics.

<span class="mw-page-title-main">Augusto Sagnotti</span> Italian theoretical physicist

Augusto Sagnotti is an Italian theoretical physicist at Scuola Normale.

In mathematics, topological recursion is a recursive definition of invariants of spectral curves. It has applications in enumerative geometry, random matrix theory, mathematical physics, string theory, knot theory.

In string theory, the Ramond–Neveu–Schwarz (RNS) formalism is an approach to formulating superstrings in which the worldsheet has explicit superconformal invariance but spacetime supersymmetry is hidden, in contrast to the Green–Schwarz formalism where the latter is explicit. It was originally developed by Pierre Ramond, André Neveu and John Schwarz in the RNS model in 1971, which gives rise to type II string theories and can also give type I string theory. Heterotic string theories can also be acquired through this formalism by using a different worldsheet action. There are various ways to quantize the string within this framework including light-cone quantization, old canonical quantization, and BRST quantization. A consistent string theory is only acquired if the spectrum of states is restricted through a procedure known as a GSO projection, with this projection being automatically incorporated in the Green–Schwarz formalism.

In mathematics and theoretical physics, and especially gauge theory, the deformed Hermitian Yang–Mills (dHYM) equation is a differential equation describing the equations of motion for a D-brane in the B-model of string theory. The equation was derived by Mariño-Minasian-Moore-Strominger in the case of Abelian gauge group, and by Leung–Yau–Zaslow using mirror symmetry from the corresponding equations of motion for D-branes in the A-model of string theory.

In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.

In mathematics, mirror symmetry is a conjectural relationship between certain Calabi–Yau manifolds and a constructed "mirror manifold". The conjecture allows one to relate the number of rational curves on a Calabi-Yau manifold to integrals from a family of varieties. In short, this means there is a relation between the number of genus algebraic curves of degree on a Calabi-Yau variety and integrals on a dual variety . These relations were original discovered by Candelas, de la Ossa, Green, and Parkes in a paper studying a generic quintic threefold in as the variety and a construction from the quintic Dwork family giving . Shortly after, Sheldon Katz wrote a summary paper outlining part of their construction and conjectures what the rigorous mathematical interpretation could be.

References