Ricci-flat manifold

Last updated

In the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are of fundamental interest, as they are the solutions of Einstein's field equations in a vacuum with vanishing cosmological constant.

Contents

In Lorentzian geometry, a number of Ricci-flat metrics are known from works of Karl Schwarzschild, Roy Kerr, and Yvonne Choquet-Bruhat. In Riemannian geometry, Shing-Tung Yau's resolution of the Calabi conjecture produced a number of Ricci-flat metrics on Kähler manifolds.

Definition

A pseudo-Riemannian manifold is said to be Ricci-flat if its Ricci curvature is zero. [1] It is direct to verify that, except in dimension two, a metric is Ricci-flat if and only if its Einstein tensor is zero. [2] Ricci-flat manifolds are one of three special types of Einstein manifold, arising as the special case of scalar curvature equaling zero.

From the definition of the Weyl curvature tensor, it is direct to see that any Ricci-flat metric has Weyl curvature equal to Riemann curvature tensor. By taking traces, it is straightforward to see that the converse also holds. This may also be phrased as saying that Ricci-flatness is characterized by the vanishing of the two non-Weyl parts of the Ricci decomposition.

Since the Weyl curvature vanishes in two or three dimensions, every Ricci-flat metric in these dimensions is flat. Conversely, it is automatic from the definitions that any flat metric is Ricci-flat. The study of flat metrics is usually considered as a topic unto itself. As such, the study of Ricci-flat metrics is only a distinct topic in dimension four and above.

Examples

As noted above, any flat metric is Ricci-flat. However it is nontrivial to identify Ricci-flat manifolds whose full curvature is nonzero.

In 1916, Karl Schwarzschild found the Schwarzschild metrics, which are Ricci-flat Lorentzian manifolds of nonzero curvature. [3] Roy Kerr later found the Kerr metrics, a two-parameter family containing the Schwarzschild metrics as a special case. [4] These metrics are fully explicit and are of fundamental interest in the mathematics and physics of black holes. More generally, in general relativity, Ricci-flat Lorentzian manifolds represent the vacuum solutions of Einstein's field equations with vanishing cosmological constant. [5]

Many pseudo-Riemannian manifolds are constructed as homogeneous spaces. However, these constructions are not directly helpful for Ricci-flat Riemannian metrics, in the sense that any homogeneous Riemannian manifold which is Ricci-flat must be flat. [6] However, there are homogeneous (and even symmetric) Lorentzian manifolds which are Ricci-flat but not flat, as follows from an explicit construction and computation of Lie algebras. [7]

Until Shing-Tung Yau's resolution of the Calabi conjecture in the 1970s, it was not known whether every Ricci-flat Riemannian metric on a closed manifold is flat. [8] His work, using techniques of partial differential equations, established a comprehensive existence theory for Ricci-flat metrics in the special case of Kähler metrics on closed complex manifolds. Due to his analytical techniques, the metrics are non-explicit even in the simplest cases. Such Riemannian manifolds are often called Calabi–Yau manifolds, although various authors use this name in slightly different ways. [9]

Analytical character

Relative to harmonic coordinates, the condition of Ricci-flatness for a Riemannian metric can be interpreted as a system of elliptic partial differential equations. It is a straightforward consequence of standard elliptic regularity results that any Ricci-flat Riemannian metric on a smooth manifold is analytic, in the sense that harmonic coordinates define a compatible analytic structure, and the local representation of the metric is real-analytic. This also holds in the broader setting of Einstein Riemannian metrics. [10]

Analogously, relative to harmonic coordinates, Ricci-flatness of a Lorentzian metric can be interpreted as a system of hyperbolic partial differential equations. Based on this perspective, Yvonne Choquet-Bruhat developed the well-posedness of the Ricci-flatness condition. She reached a definitive result in collaboration with Robert Geroch in the 1960s, establishing how a certain class of maximally extended Ricci-flat Lorentzian metrics are prescribed and constructed by certain Riemannian data. These are known as maximal globally hyperbolic developments. In general relativity, this is typically interpreted as an initial value formulation of Einstein's field equations for gravitation. [11]

The study of Ricci-flatness in the Riemannian and Lorentzian cases are quite distinct. This is already indicated by the fundamental distinction between the geodesically complete metrics which are typical of Riemannian geometry and the maximal globally hyperbolic developments which arise from Choquet-Bruhat and Geroch's work. Moreover, the analyticity and corresponding unique continuation of a Ricci-flat Riemannian metric has a fundamentally different character than Ricci-flat Lorentzian metrics, which have finite speeds of propagation and fully localizable phenomena. This can be viewed as a nonlinear geometric analogue of the difference between the Laplace equation and the wave equation.

Topology of Ricci-flat Riemannian manifolds

Yau's existence theorem for Ricci-flat Kähler metrics established the precise topological condition under which such a metric exists on a given closed complex manifold: the first Chern class of the holomorphic tangent bundle must be zero. The necessity of this condition was previously known by Chern–Weil theory.

Beyond Kähler geometry, the situation is not as well understood. A four-dimensional closed and oriented manifold supporting any Einstein Riemannian metric must satisfy the Hitchin–Thorpe inequality on its topological data. As particular cases of well-known theorems on Riemannian manifolds of nonnegative Ricci curvature, any manifold with a complete Ricci-flat Riemannian metric must: [12]

Mikhael Gromov and Blaine Lawson introduced the notion of enlargeability of a closed manifold. The class of enlargeable manifolds is closed under homotopy equivalence, the taking of products, and under the connected sum with an arbitrary closed manifold. Every Ricci-flat Riemannian manifold in this class is flat, which is a corollary of Cheeger and Gromoll's splitting theorem. [13]

Ricci-flatness and holonomy

On a simply-connected Kähler manifold, a Kähler metric is Ricci-flat if and only if the holonomy group is contained in the special unitary group. On a general Kähler manifold, the if direction still holds, but only the restricted holonomy group of a Ricci-flat Kähler metric is necessarily contained in the special unitary group. [14]

A hyperkähler manifold is a Riemannian manifold whose holonomy group is contained in the symplectic group. This condition on a Riemannian manifold may also be characterized (roughly speaking) by the existence of a 2-sphere of complex structures which are all parallel. This says in particular that every hyperkähler metric is Kähler; furthermore, via the Ambrose–Singer theorem, every such metric is Ricci-flat. The Calabi–Yau theorem specializes to this context, giving a general existence and uniqueness theorem for hyperkähler metrics on compact Kähler manifolds admitting holomorphically symplectic structures. Examples of hyperkähler metrics on noncompact spaces had earlier been obtained by Eugenio Calabi. The Eguchi–Hanson space, discovered at the same time, is a special case of his construction. [15]

A quaternion-Kähler manifold is a Riemannian manifold whose holonomy group is contained in the Lie group Sp(n)·Sp(1). Marcel Berger showed that any such metric must be Einstein. Furthermore, any Ricci-flat quaternion-Kähler manifold must be locally hyperkähler, meaning that the restricted holonomy group is contained in the symplectic group. [16]

A G2 manifold or Spin(7) manifold is a Riemannian manifold whose holonomy group is contained in the Lie groups Spin(7) or G2. The Ambrose–Singer theorem implies that any such manifold is Ricci-flat. [17] The existence of closed manifolds of this type was established by Dominic Joyce in the 1990s. [18]

Marcel Berger commented that all known examples of irreducible Ricci-flat Riemannian metrics on simply-connected closed manifolds have special holonomy groups, according to the above possibilities. It is not known whether this suggests an unknown general theorem or simply a limitation of known techniques. For this reason, Berger considered Ricci-flat manifolds to be "extremely mysterious." [19]

Related Research Articles

<span class="mw-page-title-main">Calabi–Yau manifold</span> Riemannian manifold with SU(n) holonomy

In algebraic and differential geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring theory, the extra dimensions of spacetime are sometimes conjectured to take the form of a 6-dimensional Calabi–Yau manifold, which led to the idea of mirror symmetry. Their name was coined by Candelas et al. (1985), after Eugenio Calabi who first conjectured that such surfaces might exist, and Shing-Tung Yau who proved the Calabi conjecture.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In the mathematical field of Riemannian geometry, the scalar curvature is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor.

<span class="mw-page-title-main">Ricci flow</span> Partial differential equation

In the mathematical fields of differential geometry and geometric analysis, the Ricci flow, sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation. However, it is nonlinear and exhibits many phenomena not present in the study of the heat equation.

<span class="mw-page-title-main">Shing-Tung Yau</span> Chinese mathematician

Shing-Tung Yau is a Chinese-American mathematician. He is the director of the Yau Mathematical Sciences Center at Tsinghua University and Professor Emeritus at Harvard University. Until 2022 he was the William Caspar Graustein Professor of Mathematics at Harvard, at which point he moved to Tsinghua.

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.

<span class="mw-page-title-main">Eugenio Calabi</span> Italian-born American mathematician (1923–2023)

Eugenio Calabi was an Italian-born American mathematician and the Thomas A. Scott Professor of Mathematics at the University of Pennsylvania, specializing in differential geometry, partial differential equations and their applications.

In differential geometry and mathematical physics, an Einstein manifold is a Riemannian or pseudo-Riemannian differentiable manifold whose Ricci tensor is proportional to the metric. They are named after Albert Einstein because this condition is equivalent to saying that the metric is a solution of the vacuum Einstein field equations, although both the dimension and the signature of the metric can be arbitrary, thus not being restricted to Lorentzian manifolds. Einstein manifolds in four Euclidean dimensions are studied as gravitational instantons.

In differential geometry, a hyperkähler manifold is a Riemannian manifold endowed with three integrable almost complex structures that are Kähler with respect to the Riemannian metric and satisfy the quaternionic relations . In particular, it is a hypercomplex manifold. All hyperkähler manifolds are Ricci-flat and are thus Calabi–Yau manifolds.

<span class="mw-page-title-main">Richard S. Hamilton</span> American mathematician (born 1943)

Richard Streit Hamilton is an American mathematician who serves as the Davies Professor of Mathematics at Columbia University. He is known for contributions to geometric analysis and partial differential equations. Hamilton is best known for foundational contributions to the theory of the Ricci flow and the development of a corresponding program of techniques and ideas for resolving the Poincaré conjecture and geometrization conjecture in the field of geometric topology. Grigori Perelman built upon Hamilton's results to prove the conjectures, and was awarded a Millennium Prize for his work. However, Perelman declined the award, regarding Hamilton's contribution as being equal to his own.

In the mathematical field of differential geometry, there are various splitting theorems on when a pseudo-Riemannian manifold can be given as a metric product. The best-known is the Cheeger–Gromoll splitting theorem for Riemannian manifolds, although there has also been research into splitting of Lorentzian manifolds.

In differential geometry, a quaternion-Kähler manifold (or quaternionic Kähler manifold) is a Riemannian 4n-manifold whose Riemannian holonomy group is a subgroup of Sp(n)·Sp(1) for some . Here Sp(n) is the sub-group of consisting of those orthogonal transformations that arise by left-multiplication by some quaternionic matrix, while the group of unit-length quaternions instead acts on quaternionic -space by right scalar multiplication. The Lie group generated by combining these actions is then abstractly isomorphic to .

In the mathematical field of differential geometry, the Calabi conjecture was a conjecture about the existence of certain kinds of Riemannian metrics on certain complex manifolds, made by Eugenio Calabi. It was proved by Shing-Tung Yau, who received the Fields Medal and Oswald Veblen Prize in part for his proof. His work, principally an analysis of an elliptic partial differential equation known as the complex Monge–Ampère equation, was an influential early result in the field of geometric analysis.

<span class="mw-page-title-main">Tian Gang</span> Chinese mathematician (born 1958)

Tian Gang is a Chinese mathematician. He is a professor of mathematics at Peking University and Higgins Professor Emeritus at Princeton University. He is known for contributions to the mathematical fields of Kähler geometry, Gromov-Witten theory, and geometric analysis.

In Riemannian geometry, a branch of mathematics, harmonic coordinates are a certain kind of coordinate chart on a smooth manifold, determined by a Riemannian metric on the manifold. They are useful in many problems of geometric analysis due to their regularity properties.

In differential geometry, a Kähler–Einstein metric on a complex manifold is a Riemannian metric that is both a Kähler metric and an Einstein metric. A manifold is said to be Kähler–Einstein if it admits a Kähler–Einstein metric. The most important special case of these are the Calabi–Yau manifolds, which are Kähler and Ricci-flat.

Huai-Dong Cao is a Chinese–American mathematician. He is the A. Everett Pitcher Professor of Mathematics at Lehigh University. He is known for his research contributions to the Ricci flow, a topic in the field of geometric analysis.

<span class="mw-page-title-main">Thierry Aubin</span> French mathematician

Thierry Aubin was a French mathematician who worked at the Centre de Mathématiques de Jussieu, and was a leading expert on Riemannian geometry and non-linear partial differential equations. His fundamental contributions to the theory of the Yamabe equation led, in conjunction with results of Trudinger and Schoen, to a proof of the Yamabe Conjecture: every compact Riemannian manifold can be conformally rescaled to produce a manifold of constant scalar curvature. Along with Yau, he also showed that Kähler manifolds with negative first Chern classes always admit Kähler–Einstein metrics, a result closely related to the Calabi conjecture. The latter result, established by Yau, provides the largest class of known examples of compact Einstein manifolds. Aubin was the first mathematician to propose the Cartan–Hadamard conjecture.

The Geometry Festival is an annual mathematics conference held in the United States.

References

Notes.

  1. O'Neill 1983, p. 87.
  2. O'Neill 1983, p. 336.
  3. Besse 1987, Section 3F; Misner, Thorne & Wheeler 1973, Chapter 31; O'Neill 1983, Chapter 13; Schwarzschild 1916.
  4. Kerr 1963; Misner, Thorne & Wheeler 1973, Chapter 33.
  5. Besse 1987, Section 3C.
  6. Besse 1987, Theorem 7.61.
  7. Besse 1987, Theorem 7.118.
  8. Besse 1987, Paragraph 0.30.
  9. Besse 1987, Sections 11B–C; Yau 1978.
  10. Besse 1987, Section 5F.
  11. Hawking & Ellis 1973, Sections 7.5–7.6.
  12. Besse 1987, Sections 6D–E.
  13. Lawson & Michelsohn 1989, Section IV.5.
  14. Besse 1987, Proposition 10.29.
  15. Besse 1987, Sections 14A–C.
  16. Besse 1987, Section 14D.
  17. Besse 1987, Section 10F.
  18. Berger 2003, Section 13.5.1; Joyce 2000.
  19. Berger 2003, Section 11.4.6.

Sources.