Holomorphic tangent bundle

Last updated

In mathematics, and especially complex geometry, the holomorphic tangent bundle of a complex manifold is the holomorphic analogue of the tangent bundle of a smooth manifold. The fibre of the holomorphic tangent bundle over a point is the holomorphic tangent space, which is the tangent space of the underlying smooth manifold, given the structure of a complex vector space via the almost complex structure of the complex manifold .

Contents

Definition

Given a complex manifold of complex dimension , its tangent bundle as a smooth vector bundle is a real rank vector bundle on . The integrable almost complex structure corresponding to the complex structure on the manifold is an endomorphism with the property that . After complexifying the real tangent bundle to , the endomorphism may be extended complex-linearly to an endomorphism defined by for vectors in .

Since , has eigenvalues on the complexified tangent bundle, and therefore splits as a direct sum

where is the -eigenbundle, and the -eigenbundle. The holomorphic tangent bundle of is the vector bundle , and the anti-holomorphic tangent bundle is the vector bundle .

The vector bundles and are naturally complex vector subbundles of the complex vector bundle , and their duals may be taken. The holomorphic cotangent bundle is the dual of the holomorphic tangent bundle, and is written . Similarly the anti-holomorphic cotangent bundle is the dual of the anti-holomorphic tangent bundle, and is written . The holomorphic and anti-holomorphic (co)tangent bundles are interchanged by conjugation, which gives a real-linear (but not complex linear!) isomorphism .

The holomorphic tangent bundle is isomorphic as a real vector bundle of rank to the regular tangent bundle . The isomorphism is given by the composition of inclusion into the complexified tangent bundle, and then projection onto the -eigenbundle.

The canonical bundle is defined by .

Alternative local description

In a local holomorphic chart of , one has distinguished real coordinates defined by for each . These give distinguished complex-valued one-forms on . Dual to these complex-valued one-forms are the complex-valued vector fields (that is, sections of the complexified tangent bundle),

Taken together, these vector fields form a frame for , the restriction of the complexified tangent bundle to . As such, these vector fields also split the complexified tangent bundle into two subbundles

Under a holomorphic change of coordinates, these two subbundles of are preserved, and so by covering by holomorphic charts one obtains a splitting of the complexified tangent bundle. This is precisely the splitting into the holomorphic and anti-holomorphic tangent bundles previously described. Similarly the complex-valued one-forms and provide the splitting of the complexified cotangent bundle into the holomorphic and anti-holomorphic cotangent bundles.

From this perspective, the name holomorphic tangent bundle becomes transparent. Namely, the transition functions for the holomorphic tangent bundle, with local frames generated by the , are given by the Jacobian matrix of the transition functions of . Explicitly, if we have two charts with two sets of coordinates , then

Since the coordinate functions are holomorphic, so are any derivatives of them, and so the transition functions of the holomorphic tangent bundle are also holomorphic. Thus the holomorphic tangent bundle is a genuine holomorphic vector bundle. Similarly the holomorphic cotangent bundle is a genuine holomorphic vector bundle, with transition functions given by the inverse transpose of the Jacobian matrix. Notice that the anti-holomorphic tangent and cotangent bundles do not have holomorphic transition functions, but anti-holomorphic ones.

In terms of the local frames described, the almost-complex structure acts by

or in real coordinates by

Holomorphic vector fields and differential forms

Since the holomorphic tangent and cotangent bundles have the structure of holomorphic vector bundles, there are distinguished holomorphic sections. A holomorphic vector field is a holomorphic section of . A holomorphic one-form is a holomorphic section of . By taking exterior powers of , one can define holomorphic -forms for integers . The Cauchy-Riemann operator of may be extended from functions to complex-valued differential forms, and the holomorphic sections of the holomorphic cotangent bundle agree with the complex-valued differential -forms that are annihilated by . For more details see complex differential forms.

See also

Related Research Articles

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

<span class="mw-page-title-main">Tangent bundle</span> Tangent spaces of a manifold

A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold is a manifold which assembles all the tangent vectors in . As a set, it is given by the disjoint union of the tangent spaces of . That is,

In mathematics and physics, a tensor field assigns a tensor to each point of a mathematical space. Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis of stress and strain in materials, and in numerous applications in the physical sciences. As a tensor is a generalization of a scalar and a vector, a tensor field is a generalization of a scalar field or vector field that assigns, respectively, a scalar or vector to each point of space. If a tensor A is defined on a vector fields set X(M) over a module M, we call A a tensor field on M.

In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index is equal to the topological index. It includes many other theorems, such as the Chern–Gauss–Bonnet theorem and Riemann–Roch theorem, as special cases, and has applications to theoretical physics.

In mathematics, and especially differential geometry and gauge theory, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. The most common case is that of a linear connection on a vector bundle, for which the notion of parallel transport must be linear. A linear connection is equivalently specified by a covariant derivative, an operator that differentiates sections of the bundle along tangent directions in the base manifold, in such a way that parallel sections have derivative zero. Linear connections generalize, to arbitrary vector bundles, the Levi-Civita connection on the tangent bundle of a pseudo-Riemannian manifold, which gives a standard way to differentiate vector fields. Nonlinear connections generalize this concept to bundles whose fibers are not necessarily linear.

In mathematics, an almost complex manifold is a smooth manifold equipped with a smooth linear complex structure on each tangent space. Every complex manifold is an almost complex manifold, but there are almost complex manifolds that are not complex manifolds. Almost complex structures have important applications in symplectic geometry.

In mathematics, the jet is an operation that takes a differentiable function f and produces a polynomial, the truncated Taylor polynomial of f, at each point of its domain. Although this is the definition of a jet, the theory of jets regards these polynomials as being abstract polynomials rather than polynomial functions.

<span class="mw-page-title-main">Differentiable manifold</span> Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding.

In mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a real manifold with a Riemannian metric that preserves a complex structure.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction.

In mathematics, a CR manifold, or Cauchy–Riemann manifold, is a differentiable manifold together with a geometric structure modeled on that of a real hypersurface in a complex vector space, or more generally modeled on an edge of a wedge.

In mathematics, a metric connection is a connection in a vector bundle E equipped with a bundle metric; that is, a metric for which the inner product of any two vectors will remain the same when those vectors are parallel transported along any curve. This is equivalent to:

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : EX is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.

In the field of mathematics known as differential geometry, a generalized complex structure is a property of a differential manifold that includes as special cases a complex structure and a symplectic structure. Generalized complex structures were introduced by Nigel Hitchin in 2002 and further developed by his students Marco Gualtieri and Gil Cavalcanti.

In complex geometry, the term positive form refers to several classes of real differential forms of Hodge type (p, p).

In mathematics, particularly differential topology, the double tangent bundle or the second tangent bundle refers to the tangent bundle (TTM,πTTM,TM) of the total space TM of the tangent bundle (TM,πTM,M) of a smooth manifold M . A note on notation: in this article, we denote projection maps by their domains, e.g., πTTM : TTMTM. Some authors index these maps by their ranges instead, so for them, that map would be written πTM.

In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a map associated to a deformation of a scheme or complex manifold X, taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X.

In algebraic geometry and differential geometry, the nonabelian Hodge correspondence or Corlette–Simpson correspondence is a correspondence between Higgs bundles and representations of the fundamental group of a smooth, projective complex algebraic variety, or a compact Kähler manifold.

In mathematics, and in particular differential geometry and gauge theory, Hitchin's equations are a system of partial differential equations for a connection and Higgs field on a vector bundle or principal bundle over a Riemann surface, written down by Nigel Hitchin in 1987. Hitchin's equations are locally equivalent to the harmonic map equation for a surface into the symmetric space dual to the structure group. They also appear as a dimensional reduction of the self-dual Yang–Mills equations from four dimensions to two dimensions, and solutions to Hitchin's equations give examples of Higgs bundles and of holomorphic connections. The existence of solutions to Hitchin's equations on a compact Riemann surface follows from the stability of the corresponding Higgs bundle or the corresponding holomorphic connection, and this is the simplest form of the Nonabelian Hodge correspondence.

References