Non-critical string theory

Last updated

The non-critical string theory describes the relativistic string without enforcing the critical dimension. Although this allows the construction of a string theory in 4 spacetime dimensions, such a theory usually does not describe a Lorentz invariant background. However, there are recent developments which make possible Lorentz invariant quantization of string theory in 4-dimensional Minkowski space-time.[ citation needed ]

Contents

There are several applications of the non-critical string. Through the AdS/CFT correspondence it provides a holographic description of gauge theories which are asymptotically free.[ citation needed ] [1] It may then have applications to the study of the QCD, the theory of strong interactions between quarks. [1] Another area of much research is two-dimensional string theory which provides simple toy models of string theory. There also exists a duality to the 3-dimensional Ising model.[ citation needed ]

The critical dimension and central charge

In order for a string theory to be consistent, the worldsheet theory must be conformally invariant. The obstruction to conformal symmetry is known as the Weyl anomaly and is proportional to the central charge of the worldsheet theory. In order to preserve conformal symmetry the Weyl anomaly, and thus the central charge, must vanish. For the bosonic string this can be accomplished by a worldsheet theory consisting of 26 free bosons. Since each boson is interpreted as a flat spacetime dimension, the critical dimension of the bosonic string is 26. A similar logic for the superstring results in 10 free bosons (and 10 free fermions as required by worldsheet supersymmetry). The bosons are again interpreted as spacetime dimensions and so the critical dimension for the superstring is 10. A string theory which is formulated in the critical dimension is called a critical string.

The non-critical string is not formulated with the critical dimension, but nonetheless has vanishing Weyl anomaly. A worldsheet theory with the correct central charge can be constructed by introducing a non-trivial target space, commonly by giving an expectation value to the dilaton which varies linearly along some spacetime direction. (From the point of view of the worldsheet CFT, this corresponds to having a background charge.) For this reason non-critical string theory is sometimes called the linear dilaton theory. Since the dilaton is related to the string coupling constant, this theory contains a region where the coupling is weak (and so perturbation theory is valid) and another region where the theory is strongly coupled. For dilaton varying along a spacelike direction, the dimension of the theory is less than the critical dimension and so the theory is termed subcritical. For dilaton varying along a timelike direction, the dimension is greater than the critical dimension and the theory is termed supercritical. The dilaton can also vary along a lightlike direction, in which case the dimension is equal to the critical dimension and the theory is a critical string theory.

Two-dimensional string theory

Perhaps the most studied example of non-critical string theory is that with two-dimensional target space. While clearly not of phenomenological interest, string theories in two dimensions serve as important toy models. They allow one to probe interesting concepts which would be computationally intractable in a more realistic scenario.

These models often have fully non-perturbative descriptions in the form of the quantum mechanics of large matrices. Such a description known as the c=1 matrix model captures the dynamics of bosonic string theory in two dimensions. Of much recent interest are matrix models of the two-dimensional Type 0 string theories. These "matrix models" are understood as describing the dynamics of open strings lying on D-branes in these theories. Degrees of freedom associated with closed strings, and spacetime itself, appear as emergent phenomena, providing an important example of open string tachyon condensation in string theory.

See also

Related Research Articles

M-theory Framework of superstring theory

M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string-theory conference at the University of Southern California in the spring of 1995. Witten's announcement initiated a flurry of research activity known as the second superstring revolution.

String theory Theoretical framework in physics

In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries gravitational force. Thus string theory is a theory of quantum gravity.

Scalar field Assignment of numbers to points in space

In mathematics and physics, a scalar field or scalar-valued function associates a scalar value to every point in a space – possibly physical space. The scalar may either be a (dimensionless) mathematical number or a physical quantity. In a physical context, scalar fields are required to be independent of the choice of reference frame, meaning that any two observers using the same units will agree on the value of the scalar field at the same absolute point in space regardless of their respective points of origin. Examples used in physics include the temperature distribution throughout space, the pressure distribution in a fluid, and spin-zero quantum fields, such as the Higgs field. These fields are the subject of scalar field theory.

String field theory

String field theory (SFT) is a formalism in string theory in which the dynamics of relativistic strings is reformulated in the language of quantum field theory. This is accomplished at the level of perturbation theory by finding a collection of vertices for joining and splitting strings, as well as string propagators, that give a Feynman diagram-like expansion for string scattering amplitudes. In most string field theories, this expansion is encoded by a classical action found by second-quantizing the free string and adding interaction terms. As is usually the case in second quantization, a classical field configuration of the second-quantized theory is given by a wave function in the original theory. In the case of string field theory, this implies that a classical configuration, usually called the string field, is given by an element of the free string Fock space.

Supergravity Modern theory of gravitation that combines supersymmetry and general relativity

In theoretical physics, supergravity is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way.

In particle physics, the hypothetical dilaton particle is a particle of a scalar field that appears in theories with extra dimensions when the volume of the compactified dimensions varies. It appears as a radion in Kaluza–Klein theory's compactifications of extra dimensions. In Brans–Dicke theory of gravity, Newton's constant is not presumed to be constant but instead 1/G is replaced by a scalar field and the associated particle is the dilaton.

Bosonic string theory

Bosonic string theory is the original version of string theory, developed in the late 1960s. It is so called because it only contains bosons in the spectrum.

Worldsheet

In string theory, a worldsheet is a two-dimensional manifold which describes the embedding of a string in spacetime. The term was coined by Leonard Susskind around 1967 as a direct generalization of the world line concept for a point particle in special and general relativity.

Green–Schwarz mechanism

The Green–Schwarz mechanism is the main discovery that started the first superstring revolution in superstring theory.

In mathematics, and in particular, in the mathematical background of string theory, the Goddard–Thorn theorem is a theorem describing properties of a functor that quantizes bosonic strings. It is named after Peter Goddard and Charles Thorn.

Alexander Markovich Polyakov is a Russian theoretical physicist, formerly at the Landau Institute in Moscow and, since 1990, at Princeton University, where he is the Joseph Henry Professor of Physics.

A conformal anomaly, scale anomaly, trace anomaly or Weyl anomaly is an anomaly, i.e. a quantum phenomenon that breaks the conformal symmetry of the classical theory.

String cosmology

String cosmology is a relatively new field that tries to apply equations of string theory to solve the questions of early cosmology. A related area of study is brane cosmology.

Many first principles in quantum field theory are explained, or get further insight, in string theory.

Pierre Ramond is distinguished professor of physics at University of Florida in Gainesville, Florida. He initiated the development of superstring theory.

Lorentz invariance in non-critical string theory aspect of non-critical string theory

Usually non-critical string theory is considered in frames of the approach proposed by Polyakov. The other approach has been developed in. It represents a universal method to maintain explicit Lorentz invariance in any quantum relativistic theory. On an example of Nambu-Goto string theory in 4-dimensional Minkowski space-time the idea can be demonstrated as follows:

Superstring theory Theory of strings with supersymmetry

Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings.

David Olive

David Ian Olive was a British theoretical physicist. Olive made fundamental contributions to string theory and duality theory, he is particularly known for his work on the GSO projection and Montonen–Olive duality.

This page is a glossary of terms in string theory, including related areas such as supergravity, supersymmetry, and high energy physics.

Peter Christopher West, born on 4 December 1951, is a British theoretical physicist at King's College, London and a fellow of the Royal Society.

References

  1. 1 2 Kiritsis, Elias (26 Jan 2009). "Dissecting the string theory dual of QCD". Fortschritte der Physik. 57 (5–7): 369–417. arXiv: 0901.1772 . Bibcode:2009ForPh..57..396K. doi:10.1002/prop.200900011. S2CID   2236596.