The Type 0 string theory is a less well-known model of string theory. It is a superstring theory in the sense that the worldsheet theory is supersymmetric. However, the spacetime spectrum is not supersymmetric and, in fact, does not contain any fermions at all. In dimensions greater than two, the ground state is a tachyon so the theory is unstable. These properties make it similar to the bosonic string and an unsuitable proposal for describing the world as we observe it, although a GSO projection does get rid of the tachyon and the even G-parity sector of the theory defines a stable string theory. The theory is used sometimes as a toy model for exploring concepts in string theory, notably closed string tachyon condensation. Some other recent interest has involved the two-dimensional Type 0 string which has a non-perturbatively stable matrix model description.
Like the Type II string, different GSO projections result in slightly different theories, Type 0A and Type 0B. The difference lies in which types of Ramond–Ramond fields lie in the massless spectrum.
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity.
A tachyon or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of physics. If such particles did exist they could be used to send signals faster than light. According to the theory of relativity this would violate causality, leading to logical paradoxes such as the grandfather paradox. Tachyons would exhibit the unusual property of increasing in speed as their energy decreases, and would require infinite energy to slow down to the speed of light. No verifiable experimental evidence for the existence of such particles has been found.
In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a "selectron", a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly "unbroken" supersymmetry, each pair of superpartners would share the same mass and internal quantum numbers besides spin. More complex supersymmetry theories have a spontaneously broken symmetry, allowing superpartners to differ in mass.
String field theory (SFT) is a formalism in string theory in which the dynamics of relativistic strings is reformulated in the language of quantum field theory. This is accomplished at the level of perturbation theory by finding a collection of vertices for joining and splitting strings, as well as string propagators, that give a Feynman diagram-like expansion for string scattering amplitudes. In most string field theories, this expansion is encoded by a classical action found by second-quantizing the free string and adding interaction terms. As is usually the case in second quantization, a classical field configuration of the second-quantized theory is given by a wave function in the original theory. In the case of string field theory, this implies that a classical configuration, usually called the string field, is given by an element of the free string Fock space.
In string theory, D-branes, short for Dirichlet membrane, are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes were discovered by Jin Dai, Leigh, and Polchinski, and independently by Hořava, in 1989. In 1995, Polchinski identified D-branes with black p-brane solutions of supergravity, a discovery that triggered the Second Superstring Revolution and led to both holographic and M-theory dualities.
In theoretical physics, type II string theory is a unified term that includes both type IIA strings and type IIB strings theories. Type II string theory accounts for two of the five consistent superstring theories in ten dimensions. Both theories have the maximal amount of supersymmetry — namely 32 supercharges — in ten dimensions. Both theories are based on oriented closed strings. On the worldsheet, they differ only in the choice of GSO projection.
In physics, a string is a physical entity postulated in string theory and related subjects. Unlike elementary particles, which are zero-dimensional or point-like by definition, strings are one-dimensional extended entities. Researchers often have an interest in string theories because theories in which the fundamental entities are strings rather than point particles automatically have many properties that some physicists expect to hold in a fundamental theory of physics. Most notably, a theory of strings that evolve and interact according to the rules of quantum mechanics will automatically describe quantum gravity.
In string theory, K-theory classification refers to a conjectured application of K-theory to superstrings, to classify the allowed Ramond–Ramond field strengths as well as the charges of stable D-branes.
In mathematical physics, a super Virasoro algebra is an extension of the Virasoro algebra to a Lie superalgebra. There are two extensions with particular importance in superstring theory: the Ramond algebra and the Neveu–Schwarz algebra. Both algebras have N = 1 supersymmetry and an even part given by the Virasoro algebra. They describe the symmetries of a superstring in two different sectors, called the Ramond sector and the Neveu–Schwarz sector.
The history of string theory spans several decades of intense research including two superstring revolutions. Through the combined efforts of many researchers, string theory has developed into a broad and varied subject with connections to quantum gravity, particle and condensed matter physics, cosmology, and pure mathematics.
The non-critical string theory describes the relativistic string without enforcing the critical dimension. Although this allows the construction of a string theory in 4 spacetime dimensions, such a theory usually does not describe a Lorentz invariant background. However, there are recent developments which make possible Lorentz invariant quantization of string theory in 4-dimensional Minkowski space-time.
The GSO projection is an ingredient used in constructing a consistent model in superstring theory. The projection is a selection of a subset of possible vertex operators in the worldsheet conformal field theory (CFT)—usually those with specific worldsheet fermion number and periodicity conditions. Such a projection is necessary to obtain a consistent worldsheet CFT. For the projection to be consistent, the set A of operators retained by the projection must satisfy:
Pierre Ramond is distinguished professor of physics at University of Florida in Gainesville, Florida. He initiated the development of superstring theory.
Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings.
David Ian Olive was a British theoretical physicist. Olive made fundamental contributions to string theory and duality theory, he is particularly known for his work on the GSO projection and Montonen–Olive duality.
Higher-dimensional supergravity is the supersymmetric generalization of general relativity in higher dimensions. Supergravity can be formulated in any number of dimensions up to eleven. This article focuses upon supergravity (SUGRA) in greater than four dimensions.
This page is a glossary of terms in string theory, including related areas such as supergravity, supersymmetry, and high energy physics.
Ramond–Neveu–Schwarz (RNS) formalism was an early attempt to introduce fermions through the means of supersymmetry into string theory. In this theory, worldsheet embedded in spacetime is regarded as a bosonic field and the fermionic fields are regarded as the vectors of spacetime.
Green–Schwarz (GS) formalism is an attempt to introduce fermions in string theory. The theory is equivalent to RNS formalism which has been GSO projected. This theory is very hard to quantize, being straightforward to quantize only in light cone gauge. A covariant quantization of spinning string, maintaining space-time supersymmetry manifest, is possible in a formalism inspired on the GS formalism, known as pure spinor formalism.