Submersion (mathematics)

Last updated

In mathematics, a submersion is a differentiable map between differentiable manifolds whose differential is everywhere surjective. This is a basic concept in differential topology. The notion of a submersion is dual to the notion of an immersion.

Contents

Definition

Let M and N be differentiable manifolds and be a differentiable map between them. The map f is a submersion at a point if its differential

is a surjective linear map. [1] In this case p is called a regular point of the map f, otherwise, p is a critical point. A point is a regular value of f if all points p in the preimage are regular points. A differentiable map f that is a submersion at each point is called a submersion. Equivalently, f is a submersion if its differential has constant rank equal to the dimension of N.

A word of warning: some authors use the term critical point to describe a point where the rank of the Jacobian matrix of f at p is not maximal. [2] Indeed, this is the more useful notion in singularity theory. If the dimension of M is greater than or equal to the dimension of N then these two notions of critical point coincide. But if the dimension of M is less than the dimension of N, all points are critical according to the definition above (the differential cannot be surjective) but the rank of the Jacobian may still be maximal (if it is equal to dim M). The definition given above is the more commonly used; e.g., in the formulation of Sard's theorem.

Submersion theorem

Given a submersion between smooth manifolds of dimensions and , for each there are surjective charts of around , and of around , such that restricts to a submersion which, when expressed in coordinates as , becomes an ordinary orthogonal projection. As an application, for each the corresponding fiber of , denoted can be equipped with the structure of a smooth submanifold of whose dimension is equal to the difference of the dimensions of and .

The theorem is a consequence of the inverse function theorem (see Inverse function theorem#Giving a manifold structure).

For example, consider given by The Jacobian matrix is

This has maximal rank at every point except for . Also, the fibers

are empty for , and equal to a point when . Hence we only have a smooth submersion and the subsets are two-dimensional smooth manifolds for .

Examples

Maps between spheres

One large class of examples of submersions are submersions between spheres of higher dimension, such as

whose fibers have dimension . This is because the fibers (inverse images of elements ) are smooth manifolds of dimension . Then, if we take a path

and take the pullback

we get an example of a special kind of bordism, called a framed bordism. In fact, the framed cobordism groups are intimately related to the stable homotopy groups.

Families of algebraic varieties

Another large class of submersions are given by families of algebraic varieties whose fibers are smooth algebraic varieties. If we consider the underlying manifolds of these varieties, we get smooth manifolds. For example, the Weierstrass family of elliptic curves is a widely studied submersion because it includes many technical complexities used to demonstrate more complex theory, such as intersection homology and perverse sheaves. This family is given by

where is the affine line and is the affine plane. Since we are considering complex varieties, these are equivalently the spaces of the complex line and the complex plane. Note that we should actually remove the points because there are singularities (since there is a double root).

Local normal form

If f: MN is a submersion at p and f(p) = qN, then there exists an open neighborhood U of p in M, an open neighborhood V of q in N, and local coordinates (x1, …, xm) at p and (x1, …, xn) at q such that f(U) = V, and the map f in these local coordinates is the standard projection

It follows that the full preimage f−1(q) in M of a regular value q in N under a differentiable map f: MN is either empty or is a differentiable manifold of dimension dim M − dim N, possibly disconnected. This is the content of the regular value theorem (also known as the submersion theorem). In particular, the conclusion holds for all q in N if the map f is a submersion.

Topological manifold submersions

Submersions are also well-defined for general topological manifolds. [3] A topological manifold submersion is a continuous surjection f : MN such that for all p in M, for some continuous charts ψ at p and φ at f(p), the map ψ−1 ∘ f ∘ φ is equal to the projection map from Rm to Rn, where m = dim(M) ≥ n = dim(N).

See also

Notes

Related Research Articles

<span class="mw-page-title-main">Diffeomorphism</span> Isomorphism of differentiable manifolds

In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable.

<span class="mw-page-title-main">Lie group</span> Group that is also a differentiable manifold with group operations that are smooth

In mathematics, a Lie group is a group that is also a differentiable manifold.

In vector calculus and differential geometry the generalized Stokes theorem, also called the Stokes–Cartan theorem, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or and the divergence theorem is the case of a volume in Hence, the theorem is sometimes referred to as the Fundamental Theorem of Multivariate Calculus.

In differential geometry, a Riemannian manifold or Riemannian space(M, g), so called after the German mathematician Bernhard Riemann, is a real, smooth manifold M equipped with a positive-definite inner product gp on the tangent space TpM at each point p.

In mathematics, a diffeology on a set generalizes the concept of smooth charts in a differentiable manifold, declaring what the "smooth parametrizations" in the set are.

In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.

<span class="mw-page-title-main">Isometry</span> Distance-preserving mathematical transformation

In mathematics, an isometry is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning "measure". If the transformation is from a metric space to itself, it is a kind of geometric transformation known as a motion.

In mathematics, specifically differential calculus, the inverse function theorem gives a sufficient condition for a function to be invertible in a neighborhood of a point in its domain: namely, that its derivative is continuous and non-zero at the point. The theorem also gives a formula for the derivative of the inverse function. In multivariable calculus, this theorem can be generalized to any continuously differentiable, vector-valued function whose Jacobian determinant is nonzero at a point in its domain, giving a formula for the Jacobian matrix of the inverse. There are also versions of the inverse function theorem for complex holomorphic functions, for differentiable maps between manifolds, for differentiable functions between Banach spaces, and so forth.

In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed.

In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index is equal to the topological index. It includes many other theorems, such as the Chern–Gauss–Bonnet theorem and Riemann–Roch theorem, as special cases, and has applications to theoretical physics.

<span class="mw-page-title-main">Foliation</span> In mathematics, a type of equivalence relation on an n-manifold

In mathematics, a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space Rn into the cosets x + Rp of the standardly embedded subspace Rp. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear, differentiable, or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class Cr it is usually understood that r ≥ 1. The number p is called the dimension of the foliation and q = np is called its codimension.

In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below.

In mathematics, Sard's theorem, also known as Sard's lemma or the Morse–Sard theorem, is a result in mathematical analysis that asserts that the set of critical values of a smooth function f from one Euclidean space or manifold to another is a null set, i.e., it has Lebesgue measure 0. This makes the set of critical values "small" in the sense of a generic property. The theorem is named for Anthony Morse and Arthur Sard.

In mathematics, more specifically differential topology, a local diffeomorphism is intuitively a map between Smooth manifolds that preserves the local differentiable structure. The formal definition of a local diffeomorphism is given below.

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

<span class="mw-page-title-main">Differentiable manifold</span> Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In differential geometry, in the category of differentiable manifolds, a fibered manifold is a surjective submersion

<span class="mw-page-title-main">Immersion (mathematics)</span> Differentiable function whose derivative is everywhere injective

In mathematics, an immersion is a differentiable function between differentiable manifolds whose differential pushforward is everywhere injective. Explicitly, f : MN is an immersion if

In differential geometry, a Lie group action is a group action adapted to the smooth setting: is a Lie group, is a smooth manifold, and the action map is differentiable.

In mathematics, calculus on Euclidean space is a generalization of calculus of functions in one or several variables to calculus of functions on Euclidean space as well as a finite-dimensional real vector space. This calculus is also known as advanced calculus, especially in the United States. It is similar to multivariable calculus but is somewhat more sophisticated in that it uses linear algebra more extensively and covers some concepts from differential geometry such as differential forms and Stokes' formula in terms of differential forms. This extensive use of linear algebra also allows a natural generalization of multivariable calculus to calculus on Banach spaces or topological vector spaces.

References

Further reading