The mathematical term perverse sheaves refers to the objects of certain abelian categories associated to topological spaces, which may be a real or complex manifold, or more general topologically stratified spaces, possibly singular.
The concept was introduced in the work of Joseph Bernstein, Alexander Beilinson, and Pierre Deligne (1982) as a consequence of the Riemann-Hilbert correspondence, which establishes a connection between the derived categories regular holonomic D-modules and constructible sheaves. Perverse sheaves are the objects in the latter that correspond to individual D-modules (and not more general complexes thereof); a perverse sheaf is in general represented by a complex of sheaves. The concept of perverse sheaves is already implicit in a 75's paper of Kashiwara on the constructibility of solutions of holonomic D-modules.
A key observation was that the intersection homology of Mark Goresky and Robert MacPherson could be described using sheaf complexes that are actually perverse sheaves. It was clear from the outset that perverse sheaves are fundamental mathematical objects at the crossroads of algebraic geometry, topology, analysis and differential equations. They also play an important role in number theory, algebra, and representation theory.
The name perverse sheaf comes through rough translation of the French "faisceaux pervers". [1] The justification is that perverse sheaves are complexes of sheaves which have several features in common with sheaves: they form an abelian category, they have cohomology, and to construct one, it suffices to construct it locally everywhere. The adjective "perverse" originates in the intersection homology theory, [2] and its origin was explained by Goresky (2010).
The Beilinson–Bernstein–Deligne definition of a perverse sheaf proceeds through the machinery of triangulated categories in homological algebra and has a very strong algebraic flavour, although the main examples arising from Goresky–MacPherson theory are topological in nature because the simple objects in the category of perverse sheaves are the intersection cohomology complexes. This motivated MacPherson to recast the whole theory in geometric terms on a basis of Morse theory. For many applications in representation theory, perverse sheaves can be treated as a 'black box', a category with certain formal properties.
A perverse sheaf is an object C of the bounded derived category of sheaves with constructible cohomology on a space X such that the set of points x with
has real dimension at most 2i, for all i. Here jx is the inclusion map of the point x.
If X is a smooth complex algebraic variety and everywhere of dimension d, then
is a perverse sheaf for any local system . [3] If X is a flat, locally complete intersection (for example, regular) scheme over a henselian discrete valuation ring, then the constant sheaf shifted by is an étale perverse sheaf. [4]
Let X be a disk around the origin in stratified so that the origin is the unique singular stratum. Then the category of perverse sheaves on X is equivalent to the category of diagrams of vector spaces where and are invertible. [5] More generally, quivers can be used to describe perverse sheaves.[ citation needed ]
The category of perverse sheaves is an abelian subcategory of the (non-abelian) derived category of sheaves, equal to the core of a suitable t-structure, and is preserved by Verdier duality.
The bounded derived category of perverse l-adic sheaves on a scheme X is equivalent to the derived category of constructible sheaves and similarly for sheaves on the complex analytic space associated to a scheme X/C. [6]
Perverse sheaves are a fundamental tool for the geometry of singular spaces. Therefore, they are applied in a variety of mathematical areas. In the Riemann-Hilbert correspondence, perverse sheaves correspond to regular holonomic D-modules. This application establishes the notion of perverse sheaf as occurring 'in nature'. The decomposition theorem, a far-reaching extension of the hard Lefschetz theorem decomposition, requires the usage of perverse sheaves. Hodge modules are, roughly speaking, a Hodge-theoretic refinement of perverse sheaves. The geometric Satake equivalence identifies equivariant perverse sheaves on the affine Grassmannian with representations of the Langlands dual group of a reductive group G - see Mirković & Vilonen (2007). A proof of the Weil conjectures using perverse sheaves is given in Kiehl & Weissauer (2001).
Massless fields in superstring compactifications have been identified with cohomology classes on the target space (i.e. four-dimensional Minkowski space with a six-dimensional Calabi-Yau (CY) manifold). The determination of the matter and interaction content requires a detailed analysis of the (co)homology of these spaces: nearly all massless fields in the effective physics model are represented by certain (co)homology elements.
However, a troubling consequence occurs when the target space is singular. A singular target space means that only the CY manifold part is singular as the Minkowski space factor is smooth. Such a singular CY manifold is called a conifold as it is a CY manifold that admits conical singularities.
Andrew Strominger observed (A. Strominger, 1995) that conifolds correspond to massless blackholes. Conifolds are important objects in string theory: Brian Greene explains the physics of conifolds in Chapter 13 of his book The Elegant Universe —including the fact that the space can tear near the cone, and its topology can change. These singular target spaces, i.e. conifolds, correspond to certain mild degenerations of algebraic varieties which appear in a large class of supersymmetric theories, including superstring theory (E. Witten, 1982).
Essentially, different cohomology theories on singular target spaces yield different results thereby making it difficult to determine which theory physics may favor. Several important characteristics of the cohomology, which correspond to the massless fields, are based on general properties of field theories, specifically, the (2,2)-supersymmetric 2-dimensional world-sheet field theories. These properties, known as the Kähler package (T. Hubsch, 1992), should hold for singular and smooth target spaces. Paul Green and Tristan Hubsch (P. Green & T. Hubsch, 1988) determined that the manner in which you move between singular CY target spaces require moving through either a small resolution or deformation of the singularity (T. Hubsch, 1992) and called it the 'conifold transition'.
Tristan Hubsch (T. Hubsch, 1997) conjectured what this cohomology theory should be for singular target spaces. Tristan Hubsch and Abdul Rahman (T. Hubsch and A. Rahman, 2005) worked to solve the Hubsch conjecture by analyzing the non-transversal case of Witten's gauged linear sigma model (E. Witten, 1993) which induces a stratification of these algebraic varieties (termed the ground state variety) in the case of isolated conical singularities.
Under certain conditions it was determined that this ground state variety was a conifold (P. Green & T.Hubsch, 1988; T. Hubsch, 1992) with isolated conic singularities over a certain base with a 1-dimensional exocurve (termed exo-strata) attached at each singular point. T. Hubsch and A. Rahman determined the (co)-homology of this ground state variety in all dimensions, found it compatible with Mirror symmetry and String Theory but found an obstruction in the middle dimension (T. Hubsch and A. Rahman, 2005). This obstruction required revisiting Hubsch's conjecture of a Stringy Singular Cohomology (T. Hubsch, 1997). In the winter of 2002, T. Hubsch and A. Rahman met with R.M. Goresky to discuss this obstruction and in discussions between R.M. Goresky and R. MacPherson, R. MacPherson made the observation that there was such a perverse sheaf that could have the cohomology that satisfied Hubsch's conjecture and resolved the obstruction. R.M. Goresky and T. Hubsch advised A. Rahman's Ph.D. dissertation on the construction of a self-dual perverse sheaf (A. Rahman, 2009) using the zig-zag construction of MacPherson-Vilonen (R. MacPherson & K. Vilonen, 1986). This perverse sheaf proved the Hübsch conjecture for isolated conic singularities, satisfied Poincaré duality, and aligned with some of the properties of the Kähler package. Satisfaction of all of the Kähler package by this Perverse sheaf for higher codimension strata is still an open problem. Markus Banagl (M. Banagl, 2010; M. Banagl, et al., 2014) addressed the Hubsch conjecture through intersection spaces for higher codimension strata inspired by Hubsch's work (T. Hubsch, 1992, 1997; P. Green and T. Hubsch, 1988) and A. Rahman's original ansatz (A. Rahman, 2009) for isolated singularities.
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.
In mathematics, the Weil conjectures were highly influential proposals by André Weil. They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.
In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.
In mathematics and string theory, a conifold is a generalization of a manifold. Unlike manifolds, conifolds can contain conical singularities, i.e. points whose neighbourhoods look like cones over a certain base. In physics, in particular in flux compactifications of string theory, the base is usually a five-dimensional real manifold, since the typically considered conifolds are complex 3-dimensional spaces.
In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them over the next few years.
Motivic cohomology is an invariant of algebraic varieties and of more general schemes. It is a type of cohomology related to motives and includes the Chow ring of algebraic cycles as a special case. Some of the deepest problems in algebraic geometry and number theory are attempts to understand motivic cohomology.
In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper.
In the branch of mathematics called homological algebra, a t-structure is a way to axiomatize the properties of an abelian subcategory of a derived category. A t-structure on consists of two subcategories of a triangulated category or stable infinity category which abstract the idea of complexes whose cohomology vanishes in positive, respectively negative, degrees. There can be many distinct t-structures on the same category, and the interplay between these structures has implications for algebra and geometry. The notion of a t-structure arose in the work of Beilinson, Bernstein, Deligne, and Gabber on perverse sheaves.
In mathematics, specifically in algebraic geometry and algebraic topology, the Lefschetz hyperplane theorem is a precise statement of certain relations between the shape of an algebraic variety and the shape of its subvarieties. More precisely, the theorem says that for a variety X embedded in projective space and a hyperplane section Y, the homology, cohomology, and homotopy groups of X determine those of Y. A result of this kind was first stated by Solomon Lefschetz for homology groups of complex algebraic varieties. Similar results have since been found for homotopy groups, in positive characteristic, and in other homology and cohomology theories.
In mathematics, vanishing cycles are studied in singularity theory and other parts of algebraic geometry. They are those homology cycles of a smooth fiber in a family which vanish in the singular fiber.
In the mathematical field of representation theory, a Kazhdan–Lusztig polynomial is a member of a family of integral polynomials introduced by David Kazhdan and George Lusztig. They are indexed by pairs of elements y, w of a Coxeter group W, which can in particular be the Weyl group of a Lie group.
Alexander A. Beilinson is the David and Mary Winton Green University professor at the University of Chicago and works on mathematics. His research has spanned representation theory, algebraic geometry and mathematical physics. In 1999, Beilinson was awarded the Ostrowski Prize with Helmut Hofer. In 2017, he was elected to the National Academy of Sciences. In 2018, he received the Wolf Prize in Mathematics and in 2020 the Shaw Prize in Mathematics.
In mathematics, the term Riemann–Hilbert correspondence refers to the correspondence between regular singular flat connections on algebraic vector bundles and representations of the fundamental group, and more generally to one of several generalizations of this. The original setting appearing in Hilbert's twenty-first problem was for the Riemann sphere, where it was about the existence of systems of linear regular differential equations with prescribed monodromy representations. First the Riemann sphere may be replaced by an arbitrary Riemann surface and then, in higher dimensions, Riemann surfaces are replaced by complex manifolds of dimension > 1. There is a correspondence between certain systems of partial differential equations and possible monodromies of their solutions.
Christopher Deninger is a German mathematician at the University of Münster. Deninger's research focuses on arithmetic geometry, including applications to L-functions.
Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras, simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory of singular algebraic varieties and cotangent complexes in deformation theory, among the other applications.
In mathematics, the Hodge–de Rham spectral sequence is an alternative term sometimes used to describe the Frölicher spectral sequence. This spectral sequence describes the precise relationship between the Dolbeault cohomology and the de Rham cohomology of a general complex manifold. On a compact Kähler manifold, the sequence degenerates, thereby leading to the Hodge decomposition of the de Rham cohomology.
This is a glossary of properties and concepts in algebraic topology in mathematics.
In mathematics, especially algebraic geometry, the decomposition theorem of Beilinson, Bernstein and Deligne or BBD decomposition theorem is a set of results concerning the cohomology of algebraic varieties. It was originally conjectured by Gelfand and MacPherson.
Kari Kaleva Vilonen is a Finnish mathematician, specializing in geometric representation theory. He is currently a professor at the University of Melbourne.