Mixed Hodge module

Last updated

In mathematics, mixed Hodge modules are the culmination of Hodge theory, mixed Hodge structures, intersection cohomology, and the decomposition theorem yielding a coherent framework for discussing variations of degenerating mixed Hodge structures through the six functor formalism. Essentially, these objects are a pair of a filtered D-module together with a perverse sheaf such that the functor from the Riemann–Hilbert correspondence sends to . This makes it possible to construct a Hodge structure on intersection cohomology, one of the key problems when the subject was discovered. This was solved by Morihiko Saito who found a way to use the filtration on a coherent D-module as an analogue of the Hodge filtration for a Hodge structure. [1] This made it possible to give a Hodge structure on an intersection cohomology sheaf, the simple objects in the Abelian category of perverse sheaves.

Contents

Abstract structure

Before going into the nitty gritty details of defining Mixed hodge modules, which is quite elaborate, it is useful to get a sense of what the category of Mixed Hodge modules actually provides. Given a complex algebraic variety there is an abelian category [2] pg 339 with the following functorial properties

  1. There is a faithful functor called the rationalization functor. This gives the underlying rational perverse sheaf of a mixed Hodge module.
  2. There is a faithful functor sending a mixed Hodge module to its underlying D-module
  3. These functors behave well with respect to the Riemann-Hilbert correspondence , meaning for every mixed Hodge module there is an isomorphism .

In addition, there are the following categorical properties

  1. The category of mixed Hodge modules over a point is isomorphic to the category of Mixed hodge structures,
  2. Every object in admits a weight filtration such that every morphism in preserves the weight filtration strictly, the associated graded objects are semi-simple, and in the category of mixed Hodge modules over a point, this corresponds to the weight filtration of a Mixed hodge structure.
  3. There is a dualizing functor lifting the Verdier dualizing functor in which is an involution on .

For a morphism of algebraic varieties, the associated six functors on and have the following properties

  1. don't increase the weights of a complex of mixed Hodge modules.
  2. don't decrease the weights of a complex of mixed Hodge modules.

Relation between derived categories

The derived category of mixed Hodge modules is intimately related to the derived category of constructuctible sheaves equivalent to the derived category of perverse sheaves. This is because of how the rationalization functor is compatible with the cohomology functor of a complex of mixed Hodge modules. When taking the rationalization, there is an isomorphism

for the middle perversity . Note [2] pg 310 this is the function sending , which differs from the case of pseudomanifolds where the perversity is a function where . Recall this is defined as taking the composition of perverse truncations with the shift functor, so [2] pg 341

This kind of setup is also reflected in the derived push and pull functors and with nearby and vanishing cycles , the rationalization functor takes these to their analogous perverse functors on the derived category of perverse sheaves.

Tate modules and cohomology

Here we denote the canonical projection to a point by . One of the first mixed Hodge modules available is the weight 0 Tate object, denoted which is defined as the pullback of its corresponding object in , so

It has weight zero, so corresponds to the weight 0 Tate object in the category of mixed Hodge structures. This object is useful because it can be used to compute the various cohomologies of through the six functor formalism and give them a mixed Hodge structure. These can be summarized with the table

Moreover, given a closed embedding there is the local cohomology group

Variations of Mixed Hodge structures

For a morphism of varieties the pushforward maps and give degenerating variations of mixed Hodge structures on . In order to better understand these variations, the decomposition theorem and intersection cohomology are required.

Intersection cohomology

One of the defining features of the category of mixed Hodge modules is the fact intersection cohomology can be phrased in its language. This makes it possible to use the decomposition theorem for maps of varieties. To define the intersection complex, let be the open smooth part of a variety . Then the intersection complex of can be defined as

where

as with perverse sheaves [2] pg 311. In particular, this setup can be used to show the intersection cohomology groups

have a pure weight Hodge structure.

See also

Related Research Articles

In mathematics, the Hodge conjecture is a major unsolved problem in algebraic geometry that relates the algebraic topology of a non-singular complex algebraic variety to its subvarieties. More specifically, the conjecture states that certain de Rham cohomology classes are algebraic; that is, they are sums of Poincaré duals of the homology classes of subvarieties. It was formulated by the Scottish mathematician William Vallance Douglas Hodge as a result of a work in between 1930 and 1940 to enrich the description of de Rham cohomology to include extra structure that is present in the case of complex algebraic varieties. It received little attention before Hodge presented it in an address during the 1950 International Congress of Mathematicians, held in Cambridge, Massachusetts. The Hodge conjecture is one of the Clay Mathematics Institute's Millennium Prize Problems, with a prize of $1,000,000 for whoever can prove or disprove the Hodge conjecture.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In algebraic topology, a branch of mathematics, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions.

In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.

In mathematics, an algebraic torus, where a one dimensional torus is typically denoted by , , or , is a type of commutative affine algebraic group commonly found in projective algebraic geometry and toric geometry. Higher dimensional algebraic tori can be modelled as a product of algebraic groups . These groups were named by analogy with the theory of tori in Lie group theory. For example, over the complex numbers the algebraic torus is isomorphic to the group scheme , which is the scheme theoretic analogue of the Lie group . In fact, any -action on a complex vector space can be pulled back to a -action from the inclusion as real manifolds.

In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them over the next few years.

In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another.

In mathematics, local coefficients is an idea from algebraic topology, a kind of half-way stage between homology theory or cohomology theory with coefficients in the usual sense, in a fixed abelian group A, and general sheaf cohomology which, roughly speaking, allows coefficients to vary from point to point in a topological space X. Such a concept was introduced by Norman Steenrod in 1943.

In mathematics, the Leray spectral sequence was a pioneering example in homological algebra, introduced in 1946 by Jean Leray. It is usually seen nowadays as a special case of the Grothendieck spectral sequence.

In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968). All these concepts were further generalized to mixed Hodge modules over complex varieties by Morihiko Saito (1989).

In homological algebra, the hyperhomology or hypercohomology is a generalization of (co)homology functors which takes as input not objects in an abelian category but instead chain complexes of objects, so objects in . It is a sort of cross between the derived functor cohomology of an object and the homology of a chain complex since hypercohomology corresponds to the derived global sections functor .

In mathematics, Hochschild homology is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by Gerhard Hochschild (1945) for algebras over a field, and extended to algebras over more general rings by Henri Cartan and Samuel Eilenberg (1956).

In mathematics the cotangent complex is roughly a universal linearization of a morphism of geometric or algebraic objects. Cotangent complexes were originally defined in special cases by a number of authors. Luc Illusie, Daniel Quillen, and M. André independently came up with a definition that works in all cases.

In algebraic geometry and algebraic topology, branches of mathematics, A1homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to Fabien Morel and Vladimir Voevodsky. The underlying idea is that it should be possible to develop a purely algebraic approach to homotopy theory by replacing the unit interval [0, 1], which is not an algebraic variety, with the affine line A1, which is. The theory has seen spectacular applications such as Voevodsky's construction of the derived category of mixed motives and the proof of the Milnor and Bloch-Kato conjectures.

In mathematics, Deligne cohomology is the hypercohomology of the Deligne complex of a complex manifold. It was introduced by Pierre Deligne in unpublished work in about 1972 as a cohomology theory for algebraic varieties that includes both ordinary cohomology and intermediate Jacobians.

In mathematics, especially algebraic geometry the decomposition theorem is a set of results concerning the cohomology of algebraic varieties.

In algebraic geometry, a presheaf with transfers is, roughly, a presheaf that, like cohomology theory, comes with pushforwards, “transfer” maps. Precisely, it is, by definition, a contravariant additive functor from the category of finite correspondences to the category of abelian groups.

In algebraic geometry, a mixed Hodge structure is an algebraic structure containing information about the cohomology of general algebraic varieties. It is a generalization of a Hodge structure, which is used to study smooth projective varieties.

References

  1. "Hodge structure via filtered $\mathcal{D}$-modules". www.numdam.org. Retrieved 2020-08-16.
  2. 1 2 3 4 Peters, C. (Chris) (2008). Mixed Hodge Structures. Springer Berlin Heidelberg. ISBN   978-3-540-77017-6. OCLC   1120392435.