Deligne cohomology

Last updated

In mathematics, Deligne cohomology is the hypercohomology of the Deligne complex of a complex manifold. It was introduced by Pierre Deligne in unpublished work in about 1972 as a cohomology theory for algebraic varieties that includes both ordinary cohomology and intermediate Jacobians.

Contents

For introductory accounts of Deligne cohomology see Brylinski (2008 , section 1.5), Esnault & Viehweg (1988), and Gomi (2009 , section 2).

Definition

The analytic Deligne complex Z(p)D, an on a complex analytic manifold X is

where Z(p) = (2π i)pZ. Depending on the context, is either the complex of smooth (i.e., C) differential forms or of holomorphic forms, respectively. The Deligne cohomology H q
D,an
 
(X,Z(p))
is the q-th hypercohomology of the Deligne complex. An alternative definition of this complex is given as the homotopy limit [1] of the diagram

Properties

Deligne cohomology groups H q
D
 
(X,Z(p))
can be described geometrically, especially in low degrees. For p = 0, it agrees with the q-th singular cohomology group (with Z-coefficients), by definition. For q = 2 and p = 1, it is isomorphic to the group of isomorphism classes of smooth (or holomorphic, depending on the context) principal C×-bundles over X. For p = q = 2, it is the group of isomorphism classes of C×-bundles with connection. For q = 3 and p = 2 or 3, descriptions in terms of gerbes are available (Brylinski (2008)). This has been generalized to a description in higher degrees in terms of iterated classifying spaces and connections on them (Gajer (1997)).

Relation with Hodge classes

Recall there is a subgroup of integral cohomology classes in called the group of Hodge classes. There is an exact sequence relating Deligne-cohomology, their intermediate Jacobians, and this group of Hodge classes as a short exact sequence

Applications

Deligne cohomology is used to formulate Beilinson conjectures on special values of L-functions.

Extensions

There is an extension of Deligne-cohomology defined for any symmetric spectrum [1] where for odd which can be compared with ordinary Deligne cohomology on complex analytic varieties.

See also

Related Research Articles

<span class="mw-page-title-main">Hodge conjecture</span> Unsolved problem in geometry

In mathematics, the Hodge conjecture is a major unsolved problem in algebraic geometry and complex geometry that relates the algebraic topology of a non-singular complex algebraic variety to its subvarieties.

In mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four.

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.

In algebraic geometry and the theory of complex manifolds, a logarithmic differential form is a differential form with poles of a certain kind. The concept was introduced by Pierre Deligne. In short, logarithmic differentials have the mildest possible singularities needed in order to give information about an open submanifold.

In mathematics, a bundle gerbe is a geometrical model of certain 1-gerbes with connection, or equivalently of a 2-class in Deligne cohomology.

In mathematics, specifically in algebraic geometry and algebraic topology, the Lefschetz hyperplane theorem is a precise statement of certain relations between the shape of an algebraic variety and the shape of its subvarieties. More precisely, the theorem says that for a variety X embedded in projective space and a hyperplane section Y, the homology, cohomology, and homotopy groups of X determine those of Y. A result of this kind was first stated by Solomon Lefschetz for homology groups of complex algebraic varieties. Similar results have since been found for homotopy groups, in positive characteristic, and in other homology and cohomology theories.

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

In mathematics, in the field of algebraic geometry, the period mapping relates families of Kähler manifolds to families of Hodge structures.

In mathematics, the Poincaré residue is a generalization, to several complex variables and complex manifold theory, of the residue at a pole of complex function theory. It is just one of a number of such possible extensions.

In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968). All these concepts were further generalized to mixed Hodge modules over complex varieties by Morihiko Saito (1989).

In homological algebra, the hyperhomology or hypercohomology is a generalization of (co)homology functors which takes as input not objects in an abelian category but instead chain complexes of objects, so objects in . It is a sort of cross between the derived functor cohomology of an object and the homology of a chain complex since hypercohomology corresponds to the derived global sections functor .

In mathematics, mixed Hodge modules are the culmination of Hodge theory, mixed Hodge structures, intersection cohomology, and the decomposition theorem yielding a coherent framework for discussing variations of degenerating mixed Hodge structures through the six functor formalism. Essentially, these objects are a pair of a filtered D-module together with a perverse sheaf such that the functor from the Riemann–Hilbert correspondence sends to . This makes it possible to construct a Hodge structure on intersection cohomology, one of the key problems when the subject was discovered. This was solved by Morihiko Saito who found a way to use the filtration on a coherent D-module as an analogue of the Hodge filtration for a Hodge structure. This made it possible to give a Hodge structure on an intersection cohomology sheaf, the simple objects in the Abelian category of perverse sheaves.

In mathematics the Jacobian ideal or gradient ideal is the ideal generated by the Jacobian of a function or function germ. Let denote the ring of smooth functions in variables and a function in the ring. The Jacobian ideal of is

In mathematics, the Hodge–de Rham spectral sequence is an alternative term sometimes used to describe the Frölicher spectral sequence. This spectral sequence describes the precise relationship between the Dolbeault cohomology and the de Rham cohomology of a general complex manifold. On a compact Kähler manifold, the sequence degenerates, thereby leading to the Hodge decomposition of the de Rham cohomology.

In algebraic geometry and differential geometry, the nonabelian Hodge correspondence or Corlette–Simpson correspondence is a correspondence between Higgs bundles and representations of the fundamental group of a smooth, projective complex algebraic variety, or a compact Kähler manifold.

In mathematics, especially algebraic geometry, the decomposition theorem of Beilinson, Bernstein and Deligne or BBD decomposition theorem is a set of results concerning the cohomology of algebraic varieties. It was originally conjectured by Gelfand and MacPherson.

In algebraic geometry, a mixed Hodge structure is an algebraic structure containing information about the cohomology of general algebraic varieties. It is a generalization of a Hodge structure, which is used to study smooth projective varieties.

In mathematics, the local invariant cycle theorem was originally a conjecture of Griffiths which states that, given a surjective proper map from a Kähler manifold to the unit disk that has maximal rank everywhere except over 0, each cohomology class on is the restriction of some cohomology class on the entire if the cohomology class is invariant under a circle action ; in short,

References

  1. 1 2 Hopkins, Michael J.; Quick, Gereon (March 2015). "Hodge filtered complex bordism". Journal of Topology. 8 (1): 147–183. arXiv: 1212.2173 . doi:10.1112/jtopol/jtu021. S2CID   16757713.