Bundle gerbe

Last updated

In mathematics, a bundle gerbe is a geometrical model of certain 1-gerbes with connection, or equivalently of a 2-class in Deligne cohomology.

Contents

Topology

-principal bundles over a space (see circle bundle) are geometrical realizations of 1-classes in Deligne cohomology which consist of 1-form connections and 2-form curvatures. The topology of a bundle is classified by its Chern class, which is an element of , the second integral cohomology of .

Gerbes, or more precisely 1-gerbes, are abstract descriptions of Deligne 2-classes, which each define an element of , the third integral cohomology of M.

As a cohomology class in Deligne cohomology

Recall for a smooth manifold the p-th Deligne cohomology groups are defined by the hypercohomology of the complex

called the weight q Deligne complex, where is the sheaf of germs of smooth differential k-forms tensored with . So, we write

for the Deligne-cohomology groups of weight . In the case the Deligne complex is then

We can understand the Deligne cohomology groups by looking at the Cech resolution giving a double complex. There is also an associated short exact sequence [1] :7

where are the closed germs of complex valued 2-forms on and is the subspace of such forms where period integrals are integral. This can be used to show are the isomorphism classes of bundle-gerbes on a smooth manifold , or equivalently, the isomorphism classes of -bundles on .

History

Historically the most popular construction of a gerbe is a category-theoretic model featured in Giraud's theory of gerbes, which are roughly sheaves of groupoids over M.

In 1994 [2] Murray introduced bundle gerbes, which are geometric realizations of 1-gerbes. For many purposes these are more suitable for calculations than Giraud's realization, because their construction is entirely within the framework of classical geometry. In fact, as their name suggests, they are fiber bundles. This notion was extended to higher gerbes the following year. [3]

Relationship with twisted K-theory

In Twisted K-theory and the K-theory of Bundle Gerbes [4] the authors defined modules of bundle gerbes and used this to define a K-theory for bundle gerbes. They then showed that this K-theory is isomorphic to Rosenberg's twisted K-theory, and provides an analysis-free construction.

In addition they defined a notion of twisted Chern character which is a characteristic class for an element of twisted K-theory. The twisted Chern character is a differential form that represents a class in the twisted cohomology with respect to the nilpotent operator

where is the ordinary exterior derivative and the twist is a closed 3-form. This construction was extended to equivariant K-theory and to holomorphic K-theory by Mathai and Stevenson. [5]

Relationship with field theory

Bundle gerbes have also appeared in the context of conformal field theories. Gawedzki and Reis have interpreted the Wess–Zumino term in the Wess–Zumino–Witten model (WZW) of string propagation on a group manifold as the connection of a bundle gerbe. Urs Schreiber, Christoph Schweigert and Konrad Waldorf have used this construction to extend WZW models to unoriented surfaces and, more generally, the global Kalb–Ramond coupling to unoriented strings.

More details can be found at the n-Category Café:

See also

Notes

  1. Gajer, Pawel (1996-01-26). "Geometry of Deligne cohomology". Inventiones Mathematicae. 127: 155–207. arXiv: alg-geom/9601025 . doi:10.1007/s002220050118. S2CID   18446635.
  2. in Bundle Gerbes by Michael Murray
  3. in Higher Bundle Gerbes and Cohomology Classes In Gauge Theories by Alan Carey, Michael Murray and Bai-Ling Wang
  4. by Peter Bouwknegt, Alan Carey, Varghese Mathai, Michael Murray and Danny Stevenson
  5. in Chern Character in Twisted K-theory: Equivariant and Holomorphic Cases

Related Research Articles

<span class="mw-page-title-main">Hodge conjecture</span>

In mathematics, the Hodge conjecture is a major unsolved problem in algebraic geometry and complex geometry that relates the algebraic topology of a non-singular complex algebraic variety to its subvarieties.

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov-Witten invariants.

In mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four.

In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In mathematics, a gerbe is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them.

<span class="mw-page-title-main">Grothendieck–Riemann–Roch theorem</span>

In mathematics, specifically in algebraic geometry, the Grothendieck–Riemann–Roch theorem is a far-reaching result on coherent cohomology. It is a generalisation of the Hirzebruch–Riemann–Roch theorem, about complex manifolds, which is itself a generalisation of the classical Riemann–Roch theorem for line bundles on compact Riemann surfaces.

In mathematics, a circle bundle is a fiber bundle where the fiber is the circle .

In mathematics, equivariant cohomology is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space with action of a topological group is defined as the ordinary cohomology ring with coefficient ring of the homotopy quotient :

In mathematics, an Azumaya algebra is a generalization of central simple algebras to R-algebras where R need not be a field. Such a notion was introduced in a 1951 paper of Goro Azumaya, for the case where R is a commutative local ring. The notion was developed further in ring theory, and in algebraic geometry, where Alexander Grothendieck made it the basis for his geometric theory of the Brauer group in Bourbaki seminars from 1964–65. There are now several points of access to the basic definitions.

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

In mathematics, twisted K-theory is a variation on K-theory, a mathematical theory from the 1950s that spans algebraic topology, abstract algebra and operator theory.

In homological algebra, the hyperhomology or hypercohomology is a generalization of (co)homology functors which takes as input not objects in an abelian category but instead chain complexes of objects, so objects in . It is a sort of cross between the derived functor cohomology of an object and the homology of a chain complex since hypercohomology corresponds to the derived global sections functor .

In mathematics, Arakelov theory is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions.

In mathematics, Deligne cohomology is the hypercohomology of the Deligne complex of a complex manifold. It was introduced by Pierre Deligne in unpublished work in about 1972 as a cohomology theory for algebraic varieties that includes both ordinary cohomology and intermediate Jacobians.

In mathematics, a projective bundle is a fiber bundle whose fibers are projective spaces.

In algebraic geometry, a mixed Hodge structure is an algebraic structure containing information about the cohomology of general algebraic varieties. It is a generalization of a Hodge structure, which is used to study smooth projective varieties.

In mathematics, an Abelian 2-group is a higher dimensional analogue of an Abelian group, in the sense of higher algebra, which were originally introduced by Alexander Grothendieck while studying abstract structures surrounding Abelian varieties and Picard groups. More concretely, they are given by groupoids which have a bifunctor which acts formally like the addition an Abelian group. Namely, the bifunctor has a notion of commutativity, associativity, and an identity structure. Although this seems like a rather lofty and abstract structure, there are several examples of Abelian 2-groups. In fact, some of which provide prototypes for more complex examples of higher algebraic structures, such as Abelian n-groups.

References

In string theory