Local system

Last updated

In mathematics, a local system (or a system of local coefficients) on a topological space X is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group A, and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943. [1]

Contents

Local systems are the building blocks of more general tools, such as constructible and perverse sheaves.

Definition

Let X be a topological space. A local system (of abelian groups/modules/...) on X is a locally constant sheaf (of abelian groups/modules...) on X. In other words, a sheaf is a local system if every point has an open neighborhood such that the restricted sheaf is isomorphic to the sheafification of some constant presheaf. [ clarification needed ]

Equivalent definitions

Path-connected spaces

If X is path-connected,[ clarification needed ] a local system of abelian groups has the same stalk L at every point. There is a bijective correspondence between local systems on X and group homomorphisms

and similarly for local systems of modules. The map giving the local system is called the monodromy representation of .

Proof of equivalence

Take local system and a loop at x. It's easy to show that any local system on is constant. For instance, is constant. This gives an isomorphism , i.e. between L and itself. Conversely, given a homomorphism , consider the constant sheaf on the universal cover of X. The deck-transform-invariant sections of gives a local system on X. Similarly, the deck-transform-ρ-equivariant sections give another local system on X: for a small enough open set U, it is defined as

where is the universal covering.

This shows that (for X path-connected) a local system is precisely a sheaf whose pullback to the universal cover of X is a constant sheaf.

This correspondence can be upgraded to an equivalence of categories between the category of local systems of abelian groups on X and the category of abelian groups endowed with an action of (equivalently, -modules). [2]

Stronger definition on non-connected spaces

A stronger nonequivalent definition that works for non-connected X is: the following: a local system is a covariant functor

from the fundamental groupoid of to the category of modules over a commutative ring , where typically . This is equivalently the data of an assignment to every point a module along with a group representation such that the various are compatible with change of basepoint and the induced map on fundamental groups.

Examples

i.e., the solutions to the linear differential equation .

If extends to a one-form on the above will also define a local system on , so will be trivial since . So to give an interesting example, choose one with a pole at 0:

in which case for ,

Cohomology

There are several ways to define the cohomology of a local system, called cohomology with local coefficients, which become equivalent under mild assumptions on X.

If X is paracompact and locally contractible, then . [3] If is the local system corresponding to L, then there is an identification compatible with the differentials, [4] so .

Generalization

Local systems have a mild generalization to constructible sheaves -- a constructible sheaf on a locally path connected topological space is a sheaf such that there exists a stratification of

where is a local system. These are typically found by taking the cohomology of the derived pushforward for some continuous map . For example, if we look at the complex points of the morphism

then the fibers over

are the smooth plane curve given by , but the fibers over are . If we take the derived pushforward then we get a constructible sheaf. Over we have the local systems

while over we have the local systems

where is the genus of the plane curve (which is ).

Applications

The cohomology with local coefficients in the module corresponding to the orientation covering can be used to formulate Poincaré duality for non-orientable manifolds: see Twisted Poincaré duality.

See also

Related Research Articles

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

<span class="mw-page-title-main">Čech cohomology</span>

In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech.

In mathematics, the Picard group of a ringed space X, denoted by Pic(X), is the group of isomorphism classes of invertible sheaves (or line bundles) on X, with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds.

In mathematics, the constant sheaf on a topological space associated to a set is a sheaf of sets on whose stalks are all equal to . It is denoted by or . The constant presheaf with value is the presheaf that assigns to each open subset of the value , and all of whose restriction maps are the identity map . The constant sheaf associated to is the sheafification of the constant presheaf associated to . This sheaf identifies with the sheaf of locally constant -valued functions on .

In algebraic geometry, a Noetherian scheme is a scheme that admits a finite covering by open affine subsets , where each is a Noetherian ring. More generally, a scheme is locally Noetherian if it is covered by spectra of Noetherian rings. Thus, a scheme is Noetherian if and only if it is locally Noetherian and compact. As with Noetherian rings, the concept is named after Emmy Noether.

<span class="mw-page-title-main">Complex torus</span>

In mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense. Here N must be the even number 2n, where n is the complex dimension of M.

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : EX is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.

In mathematics, the Leray spectral sequence was a pioneering example in homological algebra, introduced in 1946 by Jean Leray. It is usually seen nowadays as a special case of the Grothendieck spectral sequence.

In algebraic geometry and algebraic topology, branches of mathematics, A1homotopy theory or motivic homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to Fabien Morel and Vladimir Voevodsky. The underlying idea is that it should be possible to develop a purely algebraic approach to homotopy theory by replacing the unit interval [0, 1], which is not an algebraic variety, with the affine line A1, which is. The theory has seen spectacular applications such as Voevodsky's construction of the derived category of mixed motives and the proof of the Milnor and Bloch-Kato conjectures.

In the mathematical surgery theory the surgery exact sequence is the main technical tool to calculate the surgery structure set of a compact manifold in dimension . The surgery structure set of a compact -dimensional manifold is a pointed set which classifies -dimensional manifolds within the homotopy type of .

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.

In mathematics, a constructible sheaf is a sheaf of abelian groups over some topological space X, such that X is the union of a finite number of locally closed subsets on each of which the sheaf is a locally constant sheaf. It has its origins in algebraic geometry, where in étale cohomology constructible sheaves are defined in a similar way. For the derived category of constructible sheaves, see a section in ℓ-adic sheaf.

This is a glossary of algebraic geometry.

In machine learning, the kernel embedding of distributions comprises a class of nonparametric methods in which a probability distribution is represented as an element of a reproducing kernel Hilbert space (RKHS). A generalization of the individual data-point feature mapping done in classical kernel methods, the embedding of distributions into infinite-dimensional feature spaces can preserve all of the statistical features of arbitrary distributions, while allowing one to compare and manipulate distributions using Hilbert space operations such as inner products, distances, projections, linear transformations, and spectral analysis. This learning framework is very general and can be applied to distributions over any space on which a sensible kernel function may be defined. For example, various kernels have been proposed for learning from data which are: vectors in , discrete classes/categories, strings, graphs/networks, images, time series, manifolds, dynamical systems, and other structured objects. The theory behind kernel embeddings of distributions has been primarily developed by Alex Smola, Le Song , Arthur Gretton, and Bernhard Schölkopf. A review of recent works on kernel embedding of distributions can be found in.

In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times the restriction of s for any f in O(U) and s in F(U).

In algebraic geometry and differential geometry, the nonabelian Hodge correspondence or Corlette–Simpson correspondence is a correspondence between Higgs bundles and representations of the fundamental group of a smooth, projective complex algebraic variety, or a compact Kähler manifold.

This is a glossary of properties and concepts in algebraic topology in mathematics.

In mathematics, an Abelian 2-group is a higher dimensional analogue of an Abelian group, in the sense of higher algebra, which were originally introduced by Alexander Grothendieck while studying abstract structures surrounding Abelian varieties and Picard groups. More concretely, they are given by groupoids which have a bifunctor which acts formally like the addition an Abelian group. Namely, the bifunctor has a notion of commutativity, associativity, and an identity structure. Although this seems like a rather lofty and abstract structure, there are several examples of Abelian 2-groups. In fact, some of which provide prototypes for more complex examples of higher algebraic structures, such as Abelian n-groups.

References

  1. Steenrod, Norman E. (1943). "Homology with local coefficients". Annals of Mathematics . 44 (4): 610–627. doi:10.2307/1969099. MR   0009114.
  2. Milne, James S. (2017). Introduction to Shimura Varieties . Proposition 14.7.
  3. Bredon, Glen E. (1997). Sheaf Theory, Second Edition, Graduate Texts in Mathematics, vol. 25, Springer-Verlag. Chapter III, Theorem 1.1.
  4. Hatcher, Allen (2001). Algebraic Topology, Cambridge University Press. Section 3.H.