Constant sheaf

Last updated

In mathematics, the constant sheaf on a topological space associated to a set is a sheaf of sets on whose stalks are all equal to . It is denoted by or . The constant presheaf with value is the presheaf that assigns to each open subset of the value , and all of whose restriction maps are the identity map . The constant sheaf associated to is the sheafification of the constant presheaf associated to . This sheaf identifies with the sheaf of locally constant -valued functions on . [1]

Contents

In certain cases, the set may be replaced with an object in some category (e.g. when is the category of abelian groups, or commutative rings).

Constant sheaves of abelian groups appear in particular as coefficients in sheaf cohomology.

Basics

Let be a topological space, and a set. The sections of the constant sheaf over an open set may be interpreted as the continuous functions , where is given the discrete topology. If is connected, then these locally constant functions are constant. If is the unique map to the one-point space and is considered as a sheaf on , then the inverse image is the constant sheaf on . The sheaf space of is the projection map (where is given the discrete topology).

A detailed example

Constant presheaf on a two-point discrete space Constantpresheaf.png
Constant presheaf on a two-point discrete space
Two-point discrete topological space 2 point discrete space.png
Two-point discrete topological space

Let be the topological space consisting of two points and with the discrete topology. has four open sets: . The five non-trivial inclusions of the open sets of are shown in the chart.

A presheaf on chooses a set for each of the four open sets of and a restriction map for each of the inclusions (with identity map for ). The constant presheaf with value , denoted , is the presheaf where all four sets are , the integers, and all restriction maps are the identity. is a functor on the diagram of inclusions (a presheaf), because it is constant. It satisfies the gluing axiom, but is not a sheaf because it fails the local identity axiom on the empty set. This is because the empty set is covered by the empty family of sets, , and vacuously, any two sections in are equal when restricted to any set in the empty family . The local identity axiom would therefore imply that any two sections in are equal, which is false.

To modify this into a presheaf that satisfies the local identity axiom, let , a one-element set, and give the value on all non-empty sets. For each inclusion of open sets, let the restriction be the unique map to 0 if the smaller set is empty, or the identity map otherwise. Note that is forced by the local identity axiom.

Intermediate step for the constant sheaf Constantsheaf intermediate step.png
Intermediate step for the constant sheaf

Now is a separated presheaf (satisfies local identity), but unlike it fails the gluing axiom. Indeed, is disconnected, covered by non-intersecting open sets and . Choose distinct sections in over and respectively. Because and restrict to the same element 0 over , the gluing axiom would guarantee the existence of a unique section on that restricts to on and on ; but the restriction maps are the identity, giving , which is false. Intuitively, is too small to carry information about both connected components and .

Constant sheaf on a two-point topological space Constant sheaf with product.png
Constant sheaf on a two-point topological space

Modifying further to satisfy the gluing axiom, let

,

the -valued functions on , and define the restriction maps of to be natural restriction of functions to and , with the zero map restricting to . Then is a sheaf, called the constant sheaf on with value . Since all restriction maps are ring homomorphisms, is a sheaf of commutative rings.

See also

Related Research Articles

In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object .

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, there are several equivalent ways of defining the real numbers. One of them is that they form a complete ordered field that does not contain any smaller complete ordered field. Such a definition does not prove that such a complete ordered field exists, and the existence proof consists of constructing a mathematical structure that satisfies the definition.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

<span class="mw-page-title-main">Čech cohomology</span>

In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech.

In mathematics, the gluing axiom is introduced to define what a sheaf on a topological space must satisfy, given that it is a presheaf, which is by definition a contravariant functor

In mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: XY, we can define a new sheaf fF on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of fF is given by the global sections of F. This assignment gives rise to a functor f from the category of sheaves on X to the category of sheaves on Y, which is known as the direct image functor. Similar constructions exist in many other algebraic and geometric contexts, including that of quasi-coherent sheaves and étale sheaves on a scheme.

In mathematics, a local system on a topological space X is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group A, and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943.

In mathematics, the Leray spectral sequence was a pioneering example in homological algebra, introduced in 1946 by Jean Leray. It is usually seen nowadays as a special case of the Grothendieck spectral sequence.

In mathematics, mixed Hodge modules are the culmination of Hodge theory, mixed Hodge structures, intersection cohomology, and the decomposition theorem yielding a coherent framework for discussing variations of degenerating mixed Hodge structures through the six functor formalism. Essentially, these objects are a pair of a filtered D-module together with a perverse sheaf such that the functor from the Riemann–Hilbert correspondence sends to . This makes it possible to construct a Hodge structure on intersection cohomology, one of the key problems when the subject was discovered. This was solved by Morihiko Saito who found a way to use the filtration on a coherent D-module as an analogue of the Hodge filtration for a Hodge structure. This made it possible to give a Hodge structure on an intersection cohomology sheaf, the simple objects in the Abelian category of perverse sheaves.

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In mathematics, the stalk of a sheaf is a mathematical construction capturing the behaviour of a sheaf around a given point.

The Godement resolution of a sheaf is a construction in homological algebra that allows one to view global, cohomological information about the sheaf in terms of local information coming from its stalks. It is useful for computing sheaf cohomology. It was discovered by Roger Godement.

In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the concepts of rational and birational maps are widely used as well; they are partial functions that are defined locally by rational fractions instead of polynomials.

In mathematics, more specifically in homotopy theory, a simplicial presheaf is a presheaf on a site taking values in simplicial sets. Equivalently, a simplicial presheaf is a simplicial object in the category of presheaves on a site. The notion was introduced by A. Joyal in the 1970s. Similarly, a simplicial sheaf on a site is a simplicial object in the category of sheaves on the site.

In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times the restriction of s for any f in O(U) and s in F(U).

This is a glossary of properties and concepts in algebraic topology in mathematics.

In algebraic geometry, a presheaf with transfers is, roughly, a presheaf that, like cohomology theory, comes with pushforwards, “transfer” maps. Precisely, it is, by definition, a contravariant additive functor from the category of finite correspondences to the category of abelian groups.

References

  1. "Does the extension by zero sheaf of the constant sheaf have some nice description?". Mathematics Stack Exchange. Retrieved 2022-07-08.