Henselian ring

Last updated

In mathematics, a Henselian ring (or Hensel ring) is a local ring in which Hensel's lemma holds. They were introduced by Azumaya (1951), who named them after Kurt Hensel. Azumaya originally allowed Henselian rings to be non-commutative, but most authors now restrict them to be commutative.

Contents

Some standard references for Hensel rings are ( Nagata 1975 , Chapter VII), ( Raynaud 1970 ), and ( Grothendieck 1967 , Chapter 18).

Definitions

In this article rings will be assumed to be commutative, though there is also a theory of non-commutative Henselian rings.

Properties

Henselian rings in algebraic geometry

Henselian rings are the local rings with respect to the Nisnevich topology in the sense that if is a Henselian local ring, and is a Nisnevich covering of , then one of the is an isomorphism. This should be compared to the fact that for any Zariski open covering of the spectrum of a local ring , one of the is an isomorphism. In fact, this property characterises Henselian rings, resp. local rings.

Likewise strict Henselian rings are the local rings of geometric points in the étale topology.

Henselization

For any local ring A there is a universal Henselian ring B generated by A, called the Henselization of A, introduced by Nagata (1953), such that any local homomorphism from A to a Henselian ring can be extended uniquely to B. The Henselization of A is unique up to unique isomorphism. The Henselization of A is an algebraic substitute for the completion of A. The Henselization of A has the same completion and residue field as A and is a flat module over A. If A is Noetherian, reduced, normal, regular, or excellent then so is its Henselization. For example, the Henselization of the ring of polynomials k[x,y,...] localized at the point (0,0,...) is the ring of algebraic formal power series (the formal power series satisfying an algebraic equation). This can be thought of as the "algebraic" part of the completion.

Similarly there is a strictly Henselian ring generated by A, called the strict Henselization of A. The strict Henselization is not quite universal: it is unique, but only up to non-unique isomorphism. More precisely it depends on the choice of a separable algebraic closure of the residue field of A, and automorphisms of this separable algebraic closure correspond to automorphisms of the corresponding strict Henselization. For example, a strict Henselization of the field of p-adic numbers is given by the maximal unramified extension, generated by all roots of unity of order prime to p. It is not "universal" as it has non-trivial automorphisms.

Examples

Related Research Articles

In mathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extension of K that is algebraically closed. It is one of many closures in mathematics.

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

In mathematics, particularly in algebra, a field extension is a pair of fields such that the operations of K are those of L restricted to K. In this case, L is an extension field of K and K is a subfield of L. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers.

<span class="mw-page-title-main">Ring homomorphism</span> Structure-preserving functions between two rings

In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if R and S are rings, then a ring homomorphism is a function f : RS such that f is:

<span class="mw-page-title-main">Ring (mathematics)</span> Algebraic structure with addition and multiplication

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

<span class="mw-page-title-main">Commutative algebra</span> Branch of algebra that studies commutative rings

Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.

Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.

Field theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject.

In field theory, a branch of algebra, an algebraic field extension is called a separable extension if for every , the minimal polynomial of over F is a separable polynomial. There is also a more general definition that applies when E is not necessarily algebraic over F. An extension that is not separable is said to be inseparable.

In mathematics, the Brauer group of a field K is an abelian group whose elements are Morita equivalence classes of central simple algebras over K, with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer.

In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative K-algebraA which is simple, and for which the center is exactly K.

In algebra, a field k is perfect if any one of the following equivalent conditions holds:

In commutative algebra and field theory, the Frobenius endomorphism is a special endomorphism of commutative rings with prime characteristic p, an important class which includes finite fields. The endomorphism maps every element to its p-th power. In certain contexts it is an automorphism, but this is not true in general.

In mathematics, especially in the fields of representation theory and module theory, a Frobenius algebra is a finite-dimensional unital associative algebra with a special kind of bilinear form which gives the algebras particularly nice duality theories. Frobenius algebras began to be studied in the 1930s by Richard Brauer and Cecil Nesbitt and were named after Georg Frobenius. Tadashi Nakayama discovered the beginnings of a rich duality theory, . Jean Dieudonné used this to characterize Frobenius algebras. Frobenius algebras were generalized to quasi-Frobenius rings, those Noetherian rings whose right regular representation is injective. In recent times, interest has been renewed in Frobenius algebras due to connections to topological quantum field theory.

In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring and its finitely generated modules. Informally, the lemma immediately gives a precise sense in which finitely generated modules over a commutative ring behave like vector spaces over a field. It is an important tool in algebraic geometry, because it allows local data on algebraic varieties, in the form of modules over local rings, to be studied pointwise as vector spaces over the residue field of the ring.

In mathematics, an Azumaya algebra is a generalization of central simple algebras to R-algebras where R need not be a field. Such a notion was introduced in a 1951 paper of Goro Azumaya, for the case where R is a commutative local ring. The notion was developed further in ring theory, and in algebraic geometry, where Alexander Grothendieck made it the basis for his geometric theory of the Brauer group in Bourbaki seminars from 1964–65. There are now several points of access to the basic definitions.

In commutative algebra, an N-1 ring is an integral domain whose integral closure in its quotient field is a finitely generated -module. It is called a Japanese ring if for every finite extension of its quotient field , the integral closure of in is a finitely generated -module. A ring is called universally Japanese if every finitely generated integral domain over it is Japanese, and is called a Nagata ring, named for Masayoshi Nagata, or a pseudo-geometric ring if it is Noetherian and universally Japanese. A ring is called geometric if it is the local ring of an algebraic variety or a completion of such a local ring, but this concept is not used much.

In mathematics, a separable algebra is a kind of semisimple algebra. It is a generalization to associative algebras of the notion of a separable field extension.

In algebraic geometry, the Nisnevich topology, sometimes called the completely decomposed topology, is a Grothendieck topology on the category of schemes which has been used in algebraic K-theory, A¹ homotopy theory, and the theory of motives. It was originally introduced by Yevsey Nisnevich, who was motivated by the theory of adeles.

This is a glossary of commutative algebra.

References

  1. A. J. Engler, A. Prestel, Valued fields, Springer monographs of mathematics, 2005, thm. 3.2.15, p. 69.