Completion of a ring

Last updated

In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions R on a space X concentrates on a formal neighborhood of a point of X: heuristically, this is a neighborhood so small that all Taylor series centered at the point are convergent. An algebraic completion is constructed in a manner analogous to completion of a metric space with Cauchy sequences, and agrees with it in the case when R has a metric given by a non-Archimedean absolute value.

Contents

General construction

Suppose that E is an abelian group with a descending filtration

of subgroups. One then defines the completion (with respect to the filtration) as the inverse limit:

This is again an abelian group. Usually E is an additive abelian group. If E has additional algebraic structure compatible with the filtration, for instance E is a filtered ring, a filtered module, or a filtered vector space, then its completion is again an object with the same structure that is complete in the topology determined by the filtration. This construction may be applied both to commutative and noncommutative rings. As may be expected, when the intersection of the equals zero, this produces a complete topological ring.

Krull topology

In commutative algebra, the filtration on a commutative ring R by the powers of a proper ideal I determines the Krull (after Wolfgang Krull) or I-adic topology on R. The case of a maximal ideal is especially important, for example the distinguished maximal ideal of a valuation ring. The basis of open neighbourhoods of 0 in R is given by the powers In, which are nested and form a descending filtration on R:

(Open neighborhoods of any rR are given by cosets r + In.) The (I-adic) completion is the inverse limit of the factor rings,

pronounced "R I hat". The kernel of the canonical map π from the ring to its completion is the intersection of the powers of I. Thus π is injective if and only if this intersection reduces to the zero element of the ring; by the Krull intersection theorem, this is the case for any commutative Noetherian ring which is an integral domain or a local ring.

There is a related topology on R-modules, also called Krull or I-adic topology. A basis of open neighborhoods of a module M is given by the sets of the form

The I-adic completion of an R-module M is the inverse limit of the quotients

This procedure converts any module over R into a complete topological module over .

Examples

The kernel is the ideal

Completions can also be used to analyze the local structure of singularities of a scheme. For example, the affine schemes associated to and the nodal cubic plane curve have similar looking singularities at the origin when viewing their graphs (both look like a plus sign). Notice that in the second case, any Zariski neighborhood of the origin is still an irreducible curve. If we use completions, then we are looking at a "small enough" neighborhood where the node has two components. Taking the localizations of these rings along the ideal and completing gives and respectively, where is the formal square root of in More explicitly, the power series:

Since both rings are given by the intersection of two ideals generated by a homogeneous degree 1 polynomial, we can see algebraically that the singularities "look" the same. This is because such a scheme is the union of two non-equal linear subspaces of the affine plane.

Properties

Moreover, if M and N are two modules over the same topological ring R and f: M  N is a continuous module map then f uniquely extends to the map of the completions:
where are modules over

Together with the previous property, this implies that the functor of completion on finitely generated R-modules is exact: it preserves short exact sequences. In particular, taking quotients of rings commutes with completion, meaning that for any quotient R-algebra , there is an isomorphism

for some n and some ideal I (Eisenbud, Theorem 7.7).

See also

Citations

  1. "Stacks Project — Tag 0316". stacks.math.columbia.edu. Retrieved 2017-01-14.
  2. Atiyah & Macdonald 1969 , Theorem 10.26.
  3. Atiyah & Macdonald 1969 , Proposition 10.16. and Theorem 10.26.
  4. Atiyah & Macdonald 1969 , Proposition 10.14.

Related Research Articles

In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

<span class="mw-page-title-main">Prime ideal</span> Ideal in a ring which has properties similar to prime elements

In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal.

In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence of left ideals has a largest element; that is, there exists an n such that:

In commutative algebra, the mathematical study of commutative rings, adic topologies are a family of topologies on the underlying set of a module, generalizing the p-adic topologies on the integers.

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In mathematics, Hilbert's Nullstellensatz is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893.

In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules.

<span class="mw-page-title-main">Zariski topology</span> Topology on prime ideals and algebraic varieties

In algebraic geometry and commutative algebra, the Zariski topology is a topology defined on geometric objects called varieties. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring a topological space.

In ring theory, a branch of mathematics, the radical of an ideal of a commutative ring is another ideal defined by the property that an element is in the radical if and only if some power of is in . Taking the radical of an ideal is called radicalization. A radical ideal is an ideal that is equal to its radical. The radical of a primary ideal is a prime ideal.

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In mathematics, specifically abstract algebra, an Artinian ring is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are named after Emil Artin, who first discovered that the descending chain condition for ideals simultaneously generalizes finite rings and rings that are finite-dimensional vector spaces over fields. The definition of Artinian rings may be restated by interchanging the descending chain condition with an equivalent notion: the minimum condition.

In commutative algebra, a regular sequence is a sequence of elements of a commutative ring which are as independent as possible, in a precise sense. This is the algebraic analogue of the geometric notion of a complete intersection.

In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be a Noetherian local ring with maximal ideal m, and suppose a1, ..., an is a minimal set of generators of m. Then by Krull's principal ideal theorem n ≥ dim A, and A is defined to be regular if n = dim A.

In mathematics, a Noetherian topological space, named for Emmy Noether, is a topological space in which closed subsets satisfy the descending chain condition. Equivalently, we could say that the open subsets satisfy the ascending chain condition, since they are the complements of the closed subsets. The Noetherian property of a topological space can also be seen as a strong compactness condition, namely that every open subset of such a space is compact, and in fact it is equivalent to the seemingly stronger statement that every subset is compact.

In mathematics, specifically commutative algebra, a divided power structure is a way of introducing items with similar properties as expressions of the form have, also when it is not possible to actually divide by .

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

In mathematics, the Artin–Rees lemma is a basic result about modules over a Noetherian ring, along with results such as the Hilbert basis theorem. It was proved in the 1950s in independent works by the mathematicians Emil Artin and David Rees; a special case was known to Oscar Zariski prior to their work.

In commutative and homological algebra, depth is an important invariant of rings and modules. Although depth can be defined more generally, the most common case considered is the case of modules over a commutative Noetherian local ring. In this case, the depth of a module is related with its projective dimension by the Auslander–Buchsbaum formula. A more elementary property of depth is the inequality

In algebra and algebraic geometry, given a commutative Noetherian ring and an ideal in it, the n-th symbolic power of is the ideal

References