Free probability

Last updated

Free probability is a mathematical theory that studies non-commutative random variables. The "freeness" or free independence property is the analogue of the classical notion of independence, and it is connected with free products. This theory was initiated by Dan Voiculescu around 1986 in order to attack the free group factors isomorphism problem, an important unsolved problem in the theory of operator algebras. Given a free group on some number of generators, we can consider the von Neumann algebra generated by the group algebra, which is a type II1 factor. The isomorphism problem asks whether these are isomorphic for different numbers of generators. It is not even known if any two free group factors are isomorphic. This is similar to Tarski's free group problem, which asks whether two different non-abelian finitely generated free groups have the same elementary theory.

Contents

Later connections to random matrix theory, combinatorics, representations of symmetric groups, large deviations, quantum information theory and other theories were established. Free probability is currently undergoing active research.

Typically the random variables lie in a unital algebra A such as a C*-algebra or a von Neumann algebra. The algebra comes equipped with a noncommutative expectation, a linear functional φ: AC such that φ(1) = 1. Unital subalgebras A1, ..., Am are then said to be freely independent if the expectation of the product a1...an is zero whenever each aj has zero expectation, lies in an Ak, no adjacent aj's come from the same subalgebra Ak, and n is nonzero. Random variables are freely independent if they generate freely independent unital subalgebras.

One of the goals of free probability (still unaccomplished) was to construct new invariants of von Neumann algebras and free dimension is regarded as a reasonable candidate for such an invariant. The main tool used for the construction of free dimension is free entropy.

The relation of free probability with random matrices is a key reason for the wide use of free probability in other subjects. Voiculescu introduced the concept of freeness around 1983 in an operator algebraic context; at the beginning there was no relation at all with random matrices. This connection was only revealed later in 1991 by Voiculescu; he was motivated by the fact that the limit distribution which he found in his free central limit theorem had appeared before in Wigner's semi-circle law in the random matrix context.

The free cumulant functional (introduced by Roland Speicher) [1] plays a major role in the theory. It is related to the lattice of noncrossing partitions of the set { 1, ..., n } in the same way in which the classic cumulant functional is related to the lattice of all partitions of that set.

See also

Related Research Articles

In quantum mechanics, a density matrix is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed states. Mixed states arise in quantum mechanics in two different situations: first when the preparation of the system is not fully known, and thus one must deal with a statistical ensemble of possible preparations, and second when one wants to describe a physical system which is entangled with another, as its state can not be described by a pure state.

In probability theory and statistics, the cumulantsκn of a probability distribution are a set of quantities that provide an alternative to the moments of the distribution. The moments determine the cumulants in the sense that any two probability distributions whose moments are identical will have identical cumulants as well, and similarly the cumulants determine the moments.

In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings.

William Arveson American mathematician

William B. Arveson was a mathematician specializing in operator algebras who worked as a professor of Mathematics at the University of California, Berkeley.

Noncrossing partition

In combinatorial mathematics, the topic of noncrossing partitions has assumed some importance because of its application to the theory of free probability. The number of noncrossing partitions of a set of n elements is the nth Catalan number. The number of noncrossing partitions of an n-element set with k blocks is found in the Narayana number triangle.

Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics. One such formalism is provided by quantum logic.

In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms:

  1. .

In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all elements are random variables. Many important properties of physical systems can be represented mathematically as matrix problems. For example, the thermal conductivity of a lattice can be computed from the dynamical matrix of the particle-particle interactions within the lattice.

In quantum statistical mechanics, the von Neumann entropy, named after John von Neumann, is the extension of classical Gibbs entropy concepts to the field of quantum mechanics. For a quantum-mechanical system described by a density matrix ρ, the von Neumann entropy is

Dan-Virgil Voiculescu

Dan-Virgil Voiculescu is a Romanian professor of mathematics at the University of California, Berkeley. He has worked in single operator theory, operator K-theory and von Neumann algebras. More recently, he developed free probability theory.

Free convolution is the free probability analog of the classical notion of convolution of probability measures. Due to the non-commutative nature of free probability theory, one has to talk separately about additive and multiplicative free convolution, which arise from addition and multiplication of free random variables. These operations have some interpretations in terms of empirical spectral measures of random matrices.

Marchenko–Pastur distribution

In the mathematical theory of random matrices, the Marchenko–Pastur distribution, or Marchenko–Pastur law, describes the asymptotic behavior of singular values of large rectangular random matrices. The theorem is named after Ukrainian mathematicians Vladimir Marchenko and Leonid Pastur who proved this result in 1967.

In the mathematical theory of free probability, the notion of free independence was introduced by Dan Voiculescu. The definition of free independence is parallel to the classical definition of independence, except that the role of Cartesian products of measure spaces is played by the notion of a free product of (non-commutative) probability spaces.

In the mathematical field of functional analysis, a nuclear C*-algebra is a C*-algebra A such that the injective and projective C*-cross norms on AB are the same for every C*-algebra B. This property was first studied by Takesaki (1964) under the name "Property T", which is not related to Kazhdan's property T.

In mathematics, non-commutative conditional expectation is a generalization of the notion of conditional expectation in classical probability. The space of measurable functions on a -finite measure space is the canonical example of a commutative von Neumann algebra. For this reason, the theory of von Neumann algebras is sometimes referred to as noncommutative measure theory. The intimate connections of probability theory with measure theory suggest that one may be able to extend the classical ideas in probability to a noncommutative setting by studying those ideas on general von Neumann algebras.

Alice Guionnet French mathematician

Alice Guionnet is a French mathematician known for her work in probability theory, in particular on large random matrices.

Roland Speicher German mathematician (born 1960)

Roland Speicher is a German mathematician, known for his work on free probability theory. He is a professor at the Saarland University.

q-Gaussian processes are deformations of the usual Gaussian distribution. There are several different versions of this; here we treat a multivariate deformation, also addressed as q-Gaussian process, arising from free probability theory and corresponding to deformations of the canonical commutation relations. For other deformations of Gaussian distributions, see q-Gaussian distribution and Gaussian q-distribution.

References

Citations

  1. Speicher, Roland (1994), "Multiplicative functions on the lattice of non-crossing partitions and free convolution", Mathematische Annalen, 298 (4): 611–628, doi:10.1007/BF01459754, MR   1268597 .

Sources