In the mathematical field of functional analysis, Banach spaces are among the most important objects of study. In other areas of mathematical analysis, most spaces which arise in practice turn out to be Banach spaces as well.
According to Diestel (1984 , Chapter VII), the classical Banach spaces are those defined by Dunford & Schwartz (1958), which is the source for the following table.
Glossary of symbols for the table below:
Classical Banach spaces | ||||||
Dual space | Reflexive | weakly sequentially complete | Norm | Notes | ||
---|---|---|---|---|---|---|
Yes | Yes | Euclidean space | ||||
Yes | Yes | |||||
Yes | Yes | |||||
Yes | Yes | |||||
No | Yes | |||||
No | No | |||||
No | No | |||||
No | No | Isomorphic but not isometric to | ||||
No | Yes | Isometrically isomorphic to | ||||
No | Yes | Isometrically isomorphic to | ||||
No | No | Isometrically isomorphic to | ||||
No | No | Isometrically isomorphic to | ||||
No | No | |||||
No | No | |||||
? | No | Yes | ||||
? | No | Yes | A closed subspace of | |||
? | No | Yes | A closed subspace of | |||
Yes | Yes | |||||
No | Yes | The dual is if is -finite. | ||||
? | No | Yes | is the total variation of | |||
? | No | Yes | consists of functions such that | |||
No | Yes | Isomorphic to the Sobolev space | ||||
No | No | Isomorphic to essentially by Taylor's theorem. |
In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.
In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space for which the canonical evaluation map from into its bidual is a homeomorphism. A normed space is reflexive if and only if this canonical evaluation map is surjective, in which case this evaluation map is an isometric isomorphism and the normed space is a Banach space. Those spaces for which the canonical evaluation map is surjective are called semi-reflexive spaces.
In mathematics, the conformal group of an inner product space is the group of transformations from the space to itself that preserve angles. More formally, it is the group of transformations that preserve the conformal geometry of the space.
In mathematics, the ba space of an algebra of sets is the Banach space consisting of all bounded and finitely additive signed measures on . The norm is defined as the variation, that is
The spectrum of a linear operator that operates on a Banach space is a fundamental concept of functional analysis. The spectrum consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts:
In functional analysis, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute.
In mathematics, signed measure is a generalization of the concept of (positive) measure by allowing the set function to take negative values, i.e., to acquire sign.
In mathematics, a Hirzebruch surface is a ruled surface over the projective line. They were studied by Friedrich Hirzebruch.
In mathematics, the Bochner integral, named for Salomon Bochner, extends the definition of Lebesgue integral to functions that take values in a Banach space, as the limit of integrals of simple functions.
The concept of an abstract Wiener space is a mathematical construction developed by Leonard Gross to understand the structure of Gaussian measures on infinite-dimensional spaces. The construction emphasizes the fundamental role played by the Cameron–Martin space. The classical Wiener space is the prototypical example.
In functional analysis, the dual norm is a measure of size for a continuous linear function defined on a normed vector space.
In mathematics, a Grothendieck space, named after Alexander Grothendieck, is a Banach space in which every sequence in its continuous dual space that converges in the weak-* topology will also converge when is endowed with which is the weak topology induced on by its bidual. Said differently, a Grothendieck space is a Banach space for which a sequence in its dual space converges weak-* if and only if it converges weakly.
In mathematics, the Pettis integral or Gelfand–Pettis integral, named after Israel M. Gelfand and Billy James Pettis, extends the definition of the Lebesgue integral to vector-valued functions on a measure space, by exploiting duality. The integral was introduced by Gelfand for the case when the measure space is an interval with Lebesgue measure. The integral is also called the weak integral in contrast to the Bochner integral, which is the strong integral.
In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.
In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.
In mathematics, , the vector space of bounded sequences with the supremum norm, and , the vector space of essentially bounded measurable functions with the essential supremum norm, are two closely related Banach spaces. In fact the former is a special case of the latter. As a Banach space they are the continuous dual of the Banach spaces of absolutely summable sequences, and of absolutely integrable measurable functions. Pointwise multiplication gives them the structure of a Banach algebra, and in fact they are the standard examples of abelian Von Neumann algebras.
This is a glossary for the terminology in a mathematical field of functional analysis.