Center (algebra)

Last updated

The term center or centre is used in various contexts in abstract algebra to denote the set of all those elements that commute with all other elements.

Abstract algebra branch of mathematics

In algebra, which is a broad division of mathematics, abstract algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras. The term abstract algebra was coined in the early 20th century to distinguish this area of study from the other parts of algebra.

Normal subgroup subgroup invariant under conjugation

In abstract algebra, a normal subgroup is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup H of a group G is normal in G if and only if gH = Hg for all g in G. The definition of normal subgroup implies that the sets of left and right cosets coincide. In fact, a seemingly weaker condition that the sets of left and right cosets coincide also implies that the subgroup H of a group G is normal in G. Normal subgroups can be used to construct quotient groups from a given group.

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation.

In algebra, the center of a ringR is the subring consisting of the elements x such that xy = yx for all elements y in R. It is a commutative ring and is denoted as ; "Z" stands for the German word Zentrum, meaning "center".

See also

In mathematics, especially group theory, the centralizer of a subset S of a group G is the set of elements of G that commute with each element of S, and the normalizer of S are elements that satisfy a weaker condition. The centralizer and normalizer of S are subgroups of G, and can provide insight into the structure of G.

In category theory, a branch of mathematics, the (Drinfeld) center of a strict monoidal category , denoted , is the category whose objects are pairs (A,u) consisting of an object A of and a natural isomorphism satisfying

Related Research Articles

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the ancient Greek language: ὁμός (homos) meaning "same" and μορφή (morphe) meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same".

Lie algebra A vector space with an alternating binary operation satisfying the Jacobi identity.

In mathematics, a Lie algebra is a vector space together with a non-associative, alternating bilinear map , called the Lie bracket, satisfying the Jacobi identity.

Group (mathematics) set with an invertible, associative internal operation admitting a neutral element

In mathematics, a group is a set equipped with a binary operation which combines any two elements to form a third element in such a way that four conditions called group axioms are satisfied, namely closure, associativity, identity and invertibility. One of the most familiar examples of a group is the set of integers together with the addition operation, but groups are encountered in numerous areas within and outside mathematics, and help focusing on essential structural aspects, by detaching them from the concrete nature of the subject of the study.

In abstract algebra, a branch of mathematics, a monoid is an algebraic structure with a single associative binary operation and an identity element.

Ring (mathematics) algebraic structure in mathematics, not necessarily with multiplicative identity

In mathematics, a ring is one of the fundamental algebraic structures used in abstract algebra. It consists of a set equipped with two binary operations that generalize the arithmetic operations of addition and multiplication. Through this generalization, theorems from arithmetic are extended to non-numerical objects such as polynomials, series, matrices and functions.

In mathematics, in particular abstract algebra, a graded ring is a ring that is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.

In mathematics, and more specifically in abstract algebra, an algebraic structure on a set A is a collection of finitary operations on A; the set A with this structure is also called an algebra.

General linear group n x n invertible matrices over a ring

In mathematics, the general linear group of degree n is the set of n×n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible. The group is so named because the columns of an invertible matrix are linearly independent, hence the vectors/points they define are in general linear position, and matrices in the general linear group take points in general linear position to points in general linear position.

In abstract algebra, a magma is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation. The binary operation must be closed by definition but no other properties are imposed.

In mathematics, function composition is an operation that takes two functions f and g and produces a function h such that h(x) = g(f ). In this operation, the function g is applied to the result of applying the function f to x. That is, the functions f : XY and g : YZ are composed to yield a function that maps x in X to g(f ) in Z.

In mathematics and theoretical physics, a superalgebra is a Z2-graded algebra. That is, it is an algebra over a commutative ring or field with a decomposition into "even" and "odd" pieces and a multiplication operator that respects the grading.

In the mathematical subject of universal algebra, a variety of algebras is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called finitary algebraic categories.

In mathematics, Green's relations are five equivalence relations that characterise the elements of a semigroup in terms of the principal ideals they generate. The relations are named for James Alexander Green, who introduced them in a paper of 1951. John Mackintosh Howie, a prominent semigroup theorist, described this work as "so all-pervading that, on encountering a new semigroup, almost the first question one asks is 'What are the Green relations like?'". The relations are useful for understanding the nature of divisibility in a semigroup; they are also valid for groups, but in this case tell us nothing useful, because groups always have divisibility.

Abstract analytic number theory is a branch of mathematics which takes the ideas and techniques of classical analytic number theory and applies them to a variety of different mathematical fields. The classical prime number theorem serves as a prototypical example, and the emphasis is on abstract asymptotic distribution results. The theory was invented and developed by mathematicians such as John Knopfmacher and Arne Beurling in the twentieth century.

In mathematics, a regular semigroup is a semigroup S in which every element is regular, i.e., for each element a, there exists an element x such that axa = a. Regular semigroups are one of the most-studied classes of semigroups, and their structure is particularly amenable to study via Green's relations.

In mathematics, an absorbing element is a special type of element of a set with respect to a binary operation on that set. The result of combining an absorbing element with any element of the set is the absorbing element itself. In semigroup theory, the absorbing element is called a zero element because there is no risk of confusion with other notions of zero. In this article the two notions are synonymous.

In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse. It is thus not a surprise that any group is a semigroup with involution. However, there are significant natural examples of semigroups with involution that are not groups.

In mathematics, a null semigroup is a semigroup with an absorbing element, called zero, in which the product of any two elements is zero. If every element of a semigroup is a left zero then the semigroup is called a left zero semigroup; a right zero semigroup is defined analogously. According to Clifford and Preston, "In spite of their triviality, these semigroups arise naturally in a number of investigations."

References

  1. Kilp, Mati; Knauer, Ulrich; Mikhalev, Aleksandr V. (2000). Monoids, Acts and Categories. De Gruyter Expositions in Mathematics. 29. Walter de Gruyter. p. 25. ISBN   978-3-11-015248-7.
  2. Ljapin, E. S. (1968). Semigroups. Translations of Mathematical Monographs. 3. Translated by A. A. Brown; J. M. Danskin; D. Foley; S. H. Gould; E. Hewitt; S. A. Walker; J. A. Zilber. Providence, Rhode Island: American Mathematical Soc. p. 96. ISBN   978-0-8218-8641-0.
  3. Durbin, John R. (1993). Modern Algebra: An Introduction (3rd ed.). John Wiley and Sons. p. 118. ISBN   0-471-51001-7. The center of a ring R is defined to be {cR: cr = rc for every rR}., Exercise 22.22