An order unit is an element of an ordered vector space which can be used to bound all elements from above. [1] In this way (as seen in the first example below) the order unit generalizes the unit element in the reals.
According to H. H. Schaefer, "most of the ordered vector spaces occurring in analysis do not have order units." [2]
For the ordering cone in the vector space , the element is an order unit (more precisely a -order unit) if for every there exists a such that (that is, ). [3]
The order units of an ordering cone are those elements in the algebraic interior of that is, given by [3]
Let be the real numbers and then the unit element is an order unit.
Let and then the unit element is an order unit.
Each interior point of the positive cone of an ordered topological vector space is an order unit. [2]
Each order unit of an ordered TVS is interior to the positive cone for the order topology. [2]
If is a preordered vector space over the reals with order unit then the map is a sublinear functional. [4]
Suppose is an ordered vector space over the reals with order unit whose order is Archimedean and let Then the Minkowski functional of defined by is a norm called the order unit norm. It satisfies and the closed unit ball determined by is equal to that is, [4]
The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a vector subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear functionals defined on every normed vector space to make the study of the dual space "interesting". Another version of the Hahn–Banach theorem is known as the Hahn–Banach separation theorem or the hyperplane separation theorem, and has numerous uses in convex geometry.
In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.
In mathematics, a linear form is a linear map from a vector space to its field of scalars.
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.
In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak-* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.
In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “size”.
In functional analysis and related areas of mathematics an absorbing set in a vector space is a set which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorbent set. Every neighborhood of the origin in every topological vector space is an absorbing subset.
In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space is a set such that for all scalars satisfying
In mathematics, a subset C of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced, in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set.
In functional and convex analysis, and related disciplines of mathematics, the polar set is a special convex set associated to any subset of a vector space lying in the dual space The bipolar of a subset is the polar of but lies in .
In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be inflated to include the set. A set that is not bounded is called unbounded.
In mathematics, in the field of functional analysis, a Minkowski functional or gauge function is a function that recovers a notion of distance on a linear space.
In mathematics, a Riesz space, lattice-ordered vector space or vector lattice is a partially ordered vector space where the order structure is a lattice.
In mathematics, an ordered vector space or partially ordered vector space is a vector space equipped with a partial order that is compatible with the vector space operations.
In mathematics, specifically in order theory, a binary relation on a vector space over the real or complex numbers is called Archimedean if for all whenever there exists some such that for all positive integers then necessarily An Archimedean (pre)ordered vector space is a (pre)ordered vector space whose order is Archimedean. A preordered vector space is called almost Archimedean if for all whenever there exists a such that for all positive integers then
In mathematics, specifically in order theory and functional analysis, the order bound dual of an ordered vector space is the set of all linear functionals on that map order intervals, which are sets of the form to bounded sets. The order bound dual of is denoted by This space plays an important role in the theory of ordered topological vector spaces.
In mathematics, specifically in order theory and functional analysis, a subset of an ordered vector space is said to be order complete in if for every non-empty subset of that is order bounded in , the supremum ' and the infimum both exist and are elements of An ordered vector space is called order complete, Dedekind complete, a complete vector lattice, or a complete Riesz space, if it is order complete as a subset of itself, in which case it is necessarily a vector lattice. An ordered vector space is said to be countably order complete if each countable subset that is bounded above has a supremum.
In mathematics, specifically in functional analysis and order theory, a topological vector lattice is a Hausdorff topological vector space (TVS) that has a partial order making it into vector lattice that is possesses a neighborhood base at the origin consisting of solid sets. Ordered vector lattices have important applications in spectral theory.
In mathematics, specifically in order theory and functional analysis, an element of an ordered topological vector space is called a quasi-interior point of the positive cone of if and if the order interval is a total subset of ; that is, if the linear span of is a dense subset of
In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.