Order complete

Last updated

In mathematics, specifically in order theory and functional analysis, a subset of an ordered vector space is said to be order complete in if for every non-empty subset of that is order bounded in (meaning contained in an interval, which is a set of the form for some ), the supremum ' and the infimum both exist and are elements of An ordered vector space is called order complete, Dedekind complete, a complete vector lattice, or a complete Riesz space, if it is order complete as a subset of itself, [1] [2] in which case it is necessarily a vector lattice. An ordered vector space is said to be countably order complete if each countable subset that is bounded above has a supremum. [1]

Contents

Being an order complete vector space is an important property that is used frequently in the theory of topological vector lattices.

Examples

The order dual of a vector lattice is an order complete vector lattice under its canonical ordering. [1]

If is a locally convex topological vector lattice then the strong dual is an order complete locally convex topological vector lattice under its canonical order. [3]

Every reflexive locally convex topological vector lattice is order complete and a complete TVS. [3]

Properties

If is an order complete vector lattice then for any subset is the ordered direct sum of the band generated by and of the band of all elements that are disjoint from [1] For any subset of the band generated by is [1] If and are lattice disjoint then the band generated by contains and is lattice disjoint from the band generated by which contains [1]

See also

Related Research Articles

In functional analysis and related areas of mathematics, a barrelled space is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by Bourbaki (1950).

In mathematics, a Riesz space, lattice-ordered vector space or vector lattice is a partially ordered vector space where the order structure is a lattice.

<span class="mw-page-title-main">Ordered vector space</span> Vector space with a partial order

In mathematics, an ordered vector space or partially ordered vector space is a vector space equipped with a partial order that is compatible with the vector space operations.

In functional analysis, a topological vector space (TVS) is said to be quasi-complete or boundedly complete if every closed and bounded subset is complete. This concept is of considerable importance for non-metrizable TVSs.

In mathematics, specifically in functional analysis and order theory, an ordered topological vector space, also called an ordered TVS, is a topological vector space (TVS) X that has a partial order ≤ making it into an ordered vector space whose positive cone is a closed subset of X. Ordered TVS have important applications in spectral theory.

In mathematics, specifically in order theory and functional analysis, the order bound dual of an ordered vector space is the set of all linear functionals on that map order intervals, which are sets of the form to bounded sets. The order bound dual of is denoted by This space plays an important role in the theory of ordered topological vector spaces.

In mathematics, specifically in order theory and functional analysis, a subset of a vector lattice is said to be solid and is called an ideal if for all and if then An ordered vector space whose order is Archimedean is said to be Archimedean ordered. If then the ideal generated by is the smallest ideal in containing An ideal generated by a singleton set is called a principal ideal in

In mathematics, specifically in order theory and functional analysis, the order topology of an ordered vector space is the finest locally convex topological vector space (TVS) topology on for which every order interval is bounded, where an order interval in is a set of the form where and belong to

In mathematics, specifically in functional analysis and order theory, a topological vector lattice is a Hausdorff topological vector space (TVS) that has a partial order making it into vector lattice that is possesses a neighborhood base at the origin consisting of solid sets. Ordered vector lattices have important applications in spectral theory.

In mathematics, specifically in order theory and functional analysis, an element of an ordered topological vector space is called a quasi-interior point of the positive cone of if and if the order interval is a total subset of ; that is, if the linear span of is a dense subset of

In mathematics, specifically in order theory and functional analysis, an ordered vector space is said to be regularly ordered and its order is called regular if is Archimedean ordered and the order dual of distinguishes points in . Being a regularly ordered vector space is an important property in the theory of topological vector lattices.

In mathematics, specifically in order theory and functional analysis, a locally convex vector lattice (LCVL) is a topological vector lattice that is also a locally convex space. LCVLs are important in the theory of topological vector lattices.

In mathematics, specifically in order theory and functional analysis, if is a cone at 0 in a vector space such that then a subset is said to be -saturated if where Given a subset the -saturated hull of is the smallest -saturated subset of that contains If is a collection of subsets of then

In mathematics, specifically in order theory and functional analysis, a band in a vector lattice is a subspace of that is solid and such that for all such that exists in we have The smallest band containing a subset of is called the band generated by in A band generated by a singleton set is called a principal band.

In mathematics, specifically in order theory and functional analysis, two elements x and y of a vector lattice X are lattice disjoint or simply disjoint if , in which case we write , where the absolute value of x is defined to be . We say that two sets A and B are lattice disjoint or disjoint if a and b are disjoint for all a in A and all b in B, in which case we write . If A is the singleton set then we will write in place of . For any set A, we define the disjoint complement to be the set .

In mathematics, specifically in order theory and functional analysis, a filter in an order complete vector lattice is order convergent if it contains an order bounded subset and if

In functional analysis, a topological vector space (TVS) is said to be countably barrelled if every weakly bounded countable union of equicontinuous subsets of its continuous dual space is again equicontinuous. This property is a generalization of barrelled spaces.

In functional analysis, a topological vector space (TVS) is said to be countably quasi-barrelled if every strongly bounded countable union of equicontinuous subsets of its continuous dual space is again equicontinuous. This property is a generalization of quasibarrelled spaces.

In functional analysis and related areas of mathematics, an ultrabarrelled space is a topological vector spaces (TVS) for which every ultrabarrel is a neighbourhood of the origin.

In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.

References

    Bibliography