Free algebra

Last updated

In mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the polynomial ring may be regarded as a free commutative algebra.

Contents

Definition

For R a commutative ring, the free (associative, unital) algebra on n indeterminates {X1,...,Xn} is the free R-module with a basis consisting of all words over the alphabet {X1,...,Xn} (including the empty word, which is the unit of the free algebra). This R-module becomes an R-algebra by defining a multiplication as follows: the product of two basis elements is the concatenation of the corresponding words:

and the product of two arbitrary R-module elements is thus uniquely determined (because the multiplication in an R-algebra must be R-bilinear). This R-algebra is denoted RX1,...,Xn⟩. This construction can easily be generalized to an arbitrary set X of indeterminates.

In short, for an arbitrary set , the free (associative, unital) R-algebra on X is

with the R-bilinear multiplication that is concatenation on words, where X* denotes the free monoid on X (i.e. words on the letters Xi), denotes the external direct sum, and Rw denotes the free R-module on 1 element, the word w.

For example, in RX1,X2,X3,X4⟩, for scalars α, β, γ, δR, a concrete example of a product of two elements is

.

The non-commutative polynomial ring may be identified with the monoid ring over R of the free monoid of all finite words in the Xi.

Contrast with polynomials

Since the words over the alphabet {X1, ...,Xn} form a basis of RX1,...,Xn⟩, it is clear that any element of RX1, ...,Xn⟩ can be written uniquely in the form:

where are elements of R and all but finitely many of these elements are zero. This explains why the elements of RX1,...,Xn⟩ are often denoted as "non-commutative polynomials" in the "variables" (or "indeterminates") X1,...,Xn; the elements are said to be "coefficients" of these polynomials, and the R-algebra RX1,...,Xn⟩ is called the "non-commutative polynomial algebra over R in n indeterminates". Note that unlike in an actual polynomial ring, the variables do not commute. For example, X1X2 does not equal X2X1.

More generally, one can construct the free algebra RE⟩ on any set E of generators. Since rings may be regarded as Z-algebras, a free ring on E can be defined as the free algebra ZE⟩.

Over a field, the free algebra on n indeterminates can be constructed as the tensor algebra on an n-dimensional vector space. For a more general coefficient ring, the same construction works if we take the free module on n generators.

The construction of the free algebra on E is functorial in nature and satisfies an appropriate universal property. The free algebra functor is left adjoint to the forgetful functor from the category of R-algebras to the category of sets.

Free algebras over division rings are free ideal rings.

See also

Related Research Articles

<span class="mw-page-title-main">Associative algebra</span> Algebraic structure with (a + b)(c + d) = ac + ad + bc + bd and (a)(bc) = (ab)(c)

In mathematics, an associative algebraA is an algebraic structure with compatible operations of addition, multiplication, and a scalar multiplication by elements in some field K. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over the field K. A standard first example of a K-algebra is a ring of square matrices over a field K, with the usual matrix multiplication.

In abstract algebra, a monoid ring is a ring constructed from a ring and a monoid, just as a group ring is constructed from a ring and a group.

<span class="mw-page-title-main">Ring (mathematics)</span> Algebraic structure with addition and multiplication

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence of left ideals has a largest element; that is, there exists an n such that:

<span class="mw-page-title-main">Commutative ring</span> Algebraic structure

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.

<span class="mw-page-title-main">Ring theory</span> Branch of algebra

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antiautomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

<span class="mw-page-title-main">Quantum group</span> Algebraic construct of interest in theoretical physics

In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.

In algebra and in particular in algebraic combinatorics, the ring of symmetric functions is a specific limit of the rings of symmetric polynomials in n indeterminates, as n goes to infinity. This ring serves as universal structure in which relations between symmetric polynomials can be expressed in a way independent of the number n of indeterminates. Among other things, this ring plays an important role in the representation theory of the symmetric group.

<span class="mw-page-title-main">Polynomial ring</span> Algebraic structure

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In mathematics and theoretical physics, a superalgebra is a Z2-graded algebra. That is, it is an algebra over a commutative ring or field with a decomposition into "even" and "odd" pieces and a multiplication operator that respects the grading.

In commutative algebra, a regular sequence is a sequence of elements of a commutative ring which are as independent as possible, in a precise sense. This is the algebraic analogue of the geometric notion of a complete intersection.

In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.

In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients that is equal to zero if and only if the polynomials have a common root, or, equivalently, a common factor. In some older texts, the resultant is also called the eliminant.

In mathematics, a D-module is a module over a ring D of differential operators. The major interest of such D-modules is as an approach to the theory of linear partial differential equations. Since around 1970, D-module theory has been built up, mainly as a response to the ideas of Mikio Sato on algebraic analysis, and expanding on the work of Sato and Joseph Bernstein on the Bernstein–Sato polynomial.

In mathematics, a finitely generated algebra is a commutative associative algebra A over a field K where there exists a finite set of elements a1,...,an of A such that every element of A can be expressed as a polynomial in a1,...,an, with coefficients in K.

In mathematics, a Stanley–Reisner ring, or face ring, is a quotient of a polynomial algebra over a field by a square-free monomial ideal. Such ideals are described more geometrically in terms of finite simplicial complexes. The Stanley–Reisner ring construction is a basic tool within algebraic combinatorics and combinatorial commutative algebra. Its properties were investigated by Richard Stanley, Melvin Hochster, and Gerald Reisner in the early 1970s.

In ring theory, a branch of mathematics, a ring R is a polynomial identity ring if there is, for some N > 0, an element P ≠ 0 of the free algebra, ZX1, X2, ..., XN, over the ring of integers in N variables X1, X2, ..., XN such that

In algebraic topology, the nth symmetric product of a topological space consists of the unordered n-tuples of its elements. If one fixes a basepoint, there is a canonical way of embedding the lower-dimensional symmetric products into the higher-dimensional ones. That way, one can consider the colimit over the symmetric products, the infinite symmetric product. This construction can easily be extended to give a homotopy functor.

References