In algebra, the cofree coalgebra of a vector space or module is a coalgebra analog of the free algebra of a vector space. The cofree coalgebra of any vector space over a field exists, though it is more complicated than one might expect by analogy with the free algebra.
If V is a vector space over a field F, then the cofree coalgebra C (V), of V, is a coalgebra together with a linear map C (V) → V, such that any linear map from a coalgebra X to V factors through a coalgebra homomorphism from X to C (V). In other words, the functor C is right adjoint to the forgetful functor from coalgebras to vector spaces.
The cofree coalgebra of a vector space always exists, and is unique up to canonical isomorphism.
Cofree cocommutative coalgebras are defined in a similar way, and can be constructed as the largest cocommutative coalgebra in the cofree coalgebra.
C (V) may be constructed as a completion of the tensor coalgebra T(V) of V. For k∈N = {0, 1, 2, ...}, let TkV denote the k-fold tensor power of V:
with T0V = F, and T1V = V. Then T(V) is the direct sum of all TkV:
In addition to the graded algebra structure given by the tensor product isomorphisms TjV ⊗ TkV → Tj+kV for j, k∈N, T(V) has a graded coalgebra structure Δ : T(V) → T(V) ⊠ T(V) defined by extending
by linearity to all of T(V).
Here, the tensor product symbol ⊠ is used to indicate the tensor product used to define a coalgebra; it must not be confused with the tensor product ⊗, which is used to define the bilinear multiplication operator of the tensor algebra. The two act in different spaces, on different objects. Additional discussion of this point can be found in the tensor algebra article.
The sum above makes use of a short-hand trick, defining to be the unit in the field . For example, this short-hand trick gives, for the case of in the above sum, the result that
for . Similarly, for and , one gets
Note that there is no need to ever write as this is just plain-old scalar multiplication in the algebra; that is, one trivially has that
With the usual product this coproduct does not make T(V) into a bialgebra, but is instead dual to the algebra structure on T(V∗), where V∗ denotes the dual vector space of linear maps V → F. It can be turned into a bialgebra with the product where (i,j) denotes the binomial coefficient . This bialgebra is known as the divided power Hopf algebra. The product is dual to the coalgebra structure on T(V∗) which makes the tensor algebra a bialgebra.
Here an element of T(V) defines a linear form on T(V∗) using the nondegenerate pairings
induced by evaluation, and the duality between the coproduct on T(V) and the product on T(V∗) means that
This duality extends to a nondegenerate pairing
where
is the direct product of the tensor powers of V. (The direct sum T(V) is the subspace of the direct product for which only finitely many components are nonzero.) However, the coproduct Δ on T(V) only extends to a linear map
with values in the completed tensor product, which in this case is
and contains the tensor product as a proper subspace:
The completed tensor coalgebra C (V) is the largest subspace C satisfying
which exists because if C1 and C2 satisfiy these conditions, then so does their sum C1 + C2.
It turns out [1] that C (V) is the subspace of all representative elements:
Furthermore, by the finiteness principle for coalgebras, any f∈C (V) must belong to a finite-dimensional subcoalgebra of C (V). Using the duality pairing with T(V∗), it follows that f∈C (V) if and only if the kernel of f on T(V∗) contains a two-sided ideal of finite codimension. Equivalently,
is the union of annihilators I 0 of finite codimension ideals I in T(V∗), which are isomorphic to the duals of the finite-dimensional algebra quotients T(V∗)/I.
When V = F, T(V∗) is the polynomial algebra F[t] in one variable t, and the direct product
may be identified with the vector space F[[τ]] of formal power series
in an indeterminate τ. The coproduct Δ on the subspace F[τ] is determined by
and C (V) is the largest subspace of F[[τ]] on which this extends to a coalgebra structure.
The duality F[[τ]]×F[t] → F is determined by τj(tk) = δjk so that
Putting t=τ−1, this is the constant term in the product of two formal Laurent series. Thus, given a polynomial p(t) with leading term tN, the formal Laurent series
is a formal power series for any j∈N, and annihilates the ideal I(p) generated by p for j < N. Since F[t]/I(p) has dimension N, these formal power series span the annihilator of I(p). Furthermore, they all belong to the localization of F[τ] at the ideal generated by τ, i.e., they have the form f(τ)/g(τ) where f and g are polynomials, and g has nonzero constant term. This is the space of rational functions in τ which are regular at zero. Conversely, any proper rational function annihilates an ideal of the form I(p).
Any nonzero ideal of F[t] is principal, with finite-dimensional quotient. Thus C (V) is the sum of the annihilators of the principal ideals I(p), i.e., the space of rational functions regular at zero.
In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.
In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.
In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, .
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors, dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system; those components form an array, which can be thought of as a high-dimensional matrix.
In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted .
In mathematics, the exterior algebra or Grassmann algebra of a vector space is an associative algebra that contains which has a product, called exterior product or wedge product and denoted with , such that for every vector in The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol and the fact that the product of two elements of is "outside"
In mathematics, coalgebras or cogebras are structures that are dual to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions.
In mathematics, a bialgebra over a field K is a vector space over K which is both a unital associative algebra and a counital coassociative coalgebra. The algebraic and coalgebraic structures are made compatible with a few more axioms. Specifically, the comultiplication and the counit are both unital algebra homomorphisms, or equivalently, the multiplication and the unit of the algebra both are coalgebra morphisms.
In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antihomomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.
In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.
In mathematics, the tensor algebra of a vector space V, denoted T(V) or T•(V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product. It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property (see below).
In mathematics, the complexification of a vector space V over the field of real numbers yields a vector space VC over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include their scaling ("multiplication") by complex numbers. Any basis for V may also serve as a basis for VC over the complex numbers.
The representation theory of groups is a part of mathematics which examines how groups act on given structures.
In mathematics, loop algebras are certain types of Lie algebras, of particular interest in theoretical physics.
In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.
In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the module in a universal way.
In mathematics, a super vector space is a -graded vector space, that is, a vector space over a field with a given decomposition of subspaces of grade and grade . The study of super vector spaces and their generalizations is sometimes called super linear algebra. These objects find their principal application in theoretical physics where they are used to describe the various algebraic aspects of supersymmetry.
In mathematics a Lie coalgebra is the dual structure to a Lie algebra.
In mathematics, Schur algebras, named after Issai Schur, are certain finite-dimensional algebras closely associated with Schur–Weyl duality between general linear and symmetric groups. They are used to relate the representation theories of those two groups. Their use was promoted by the influential monograph of J. A. Green first published in 1980. The name "Schur algebra" is due to Green. In the modular case Schur algebras were used by Gordon James and Karin Erdmann to show that the problems of computing decomposition numbers for general linear groups and symmetric groups are actually equivalent. Schur algebras were used by Friedlander and Suslin to prove finite generation of cohomology of finite group schemes.
This is a glossary of representation theory in mathematics.