In mathematics, coalgebras or cogebras are structures that are dual (in the category-theoretic sense of reversing arrows) to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by (vector space) duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions (see below).
Coalgebras occur naturally in a number of contexts (for example, representation theory, universal enveloping algebras and group schemes).
There are also F-coalgebras , with important applications in computer science.
One frequently recurring example of coalgebras occurs in representation theory, and in particular, in the representation theory of the rotation group. A primary task, of practical use in physics, is to obtain combinations of systems with different states of angular momentum and spin. For this purpose, one uses the Clebsch–Gordan coefficients. Given two systems with angular momenta and , a particularly important task is to find the total angular momentum given the combined state . This is provided by the total angular momentum operator, which extracts the needed quantity from each side of the tensor product. It can be written as an "external" tensor product
The word "external" appears here, in contrast to the "internal" tensor product of a tensor algebra. A tensor algebra comes with a tensor product (the internal one); it can also be equipped with a second tensor product, the "external" one, or the coproduct, having the form above. That they are two different products is emphasized by recalling that the internal tensor product of a vector and a scalar is just simple scalar multiplication. The external product keeps them separated. In this setting, the coproduct is the map
that takes
For this example, can be taken to be one of the spin representations of the rotation group, with the fundamental representation being the common-sense choice. This coproduct can be lifted to all of the tensor algebra, by a simple lemma that applies to free objects: the tensor algebra is a free algebra, therefore, any homomorphism defined on a subset can be extended to the entire algebra. Examining the lifting in detail, one observes that the coproduct behaves as the shuffle product, essentially because the two factors above, the left and right must be kept in sequential order during products of multiple angular momenta (rotations are not commutative).
The peculiar form of having the appear only once in the coproduct, rather than (for example) defining is in order to maintain linearity: for this example, (and for representation theory in general), the coproduct must be linear. As a general rule, the coproduct in representation theory is reducible; the factors are given by the Littlewood–Richardson rule. (The Littlewood–Richardson rule conveys the same idea as the Clebsch–Gordan coefficients, but in a more general setting).
The formal definition of the coalgebra, below, abstracts away this particular special case, and its requisite properties, into a general setting.
Formally, a coalgebra over a field K is a vector space C over K together with K-linear maps Δ: C → C ⊗ C and ε: C → K such that
(Here ⊗ refers to the tensor product over K and id is the identity function.)
Equivalently, the following two diagrams commute:
In the first diagram, C ⊗ (C ⊗ C) is identified with (C ⊗ C) ⊗ C; the two are naturally isomorphic. [1] Similarly, in the second diagram the naturally isomorphic spaces C, C ⊗ K and K ⊗ C are identified. [2]
The first diagram is the dual of the one expressing associativity of algebra multiplication (called the coassociativity of the comultiplication); the second diagram is the dual of the one expressing the existence of a multiplicative identity. Accordingly, the map Δ is called the comultiplication (or coproduct) of C and ε is the counit of C.
Take an arbitrary set S and form the K-vector space C = K(S) with basis S, as follows. The elements of this vector space C are those functions from S to K that map all but finitely many elements of S to zero; identify the element s of S with the function that maps s to 1 and all other elements of S to 0. Define
By linearity, both Δ and ε can then uniquely be extended to all of C. The vector space C becomes a coalgebra with comultiplication Δ and counit ε.
As a second example, consider the polynomial ring K[X] in one indeterminate X. This becomes a coalgebra (the divided power coalgebra [3] [4] ) if for all n ≥ 0 one defines:
Again, because of linearity, this suffices to define Δ and ε uniquely on all of K[X]. Now K[X] is both a unital associative algebra and a coalgebra, and the two structures are compatible. Objects like this are called bialgebras, and in fact most of the important coalgebras considered in practice are bialgebras.
Examples of coalgebras include the tensor algebra, the exterior algebra, Hopf algebras and Lie bialgebras. Unlike the polynomial case above, none of these are commutative. Therefore, the coproduct becomes the shuffle product, rather than the divided power structure given above. The shuffle product is appropriate, because it preserves the order of the terms appearing in the product, as is needed by non-commutative algebras.
The singular homology of a topological space forms a graded coalgebra whenever the Künneth isomorphism holds, e.g. if the coefficients are taken to be a field. [5]
If C is the K-vector space with basis {s, c}, consider Δ: C → C ⊗ C is given by
and ε: C → K is given by
In this situation, (C, Δ, ε) is a coalgebra known as trigonometric coalgebra. [6] [7]
For a locally finite poset P with set of intervals J, define the incidence coalgebraC with J as basis. The comultiplication and counit are defined as
The intervals of length zero correspond to points of P and are group-like elements. [8]
In finite dimensions, the duality between algebras and coalgebras is closer: the dual of a finite-dimensional (unital associative) algebra is a coalgebra, while the dual of a finite-dimensional coalgebra is a (unital associative) algebra. In general, the dual of an algebra may not be a coalgebra.
The key point is that in finite dimensions, (A ⊗ A)∗ and A∗ ⊗ A∗ are isomorphic.
To distinguish these: in general, algebra and coalgebra are dual notions (meaning that their axioms are dual: reverse the arrows), while for finite dimensions, they are also dual objects (meaning that a coalgebra is the dual object of an algebra and conversely).
If A is a finite-dimensional unital associative K-algebra, then its K-dual A∗ consisting of all K-linear maps from A to K is a coalgebra. The multiplication of A can be viewed as a linear map A ⊗ A → A, which when dualized yields a linear map A∗ → (A ⊗ A)∗. In the finite-dimensional case, (A ⊗ A)∗ is naturally isomorphic to A∗ ⊗ A∗, so this defines a comultiplication on A∗. The counit of A∗ is given by evaluating linear functionals at 1.
When working with coalgebras, a certain notation for the comultiplication simplifies the formulas considerably and has become quite popular. Given an element c of the coalgebra (C, Δ, ε), there exist elements c(i )
(1) and c(i )
(2) in C such that
Note that neither the number of terms in this sum, nor the exact values of each or , are uniquely determined by ; there is only a promise that there are finitely many terms, and that the full sum of all these terms have the right value .
In Sweedler's notation, [9] (so named after Moss Sweedler), this is abbreviated to
The fact that ε is a counit can then be expressed with the following formula
Here it is understood that the sums have the same number of terms, and the same lists of values for and , as in the previous sum for .
The coassociativity of Δ can be expressed as
In Sweedler's notation, both of these expressions are written as
Some authors omit the summation symbols as well; in this sumless Sweedler notation, one writes
and
Whenever a variable with lowered and parenthesized index is encountered in an expression of this kind, a summation symbol for that variable is implied.
A coalgebra (C, Δ, ε) is called co-commutative if , where σ: C ⊗ C → C ⊗ C is the K-linear map defined by σ(c ⊗ d) = d ⊗ c for all c, d in C. In Sweedler's sumless notation, C is co-commutative if and only if
for all c in C. (It's important to understand that the implied summation is significant here: it is not required that all the summands are pairwise equal, only that the sums are equal, a much weaker requirement.)
A group-like element (or set-like element) is an element x such that Δ(x) = x ⊗ x and ε(x) = 1. Contrary to what this naming convention suggests the group-like elements do not always form a group and in general they only form a set. The group-like elements of a Hopf algebra do form a group. A primitive element is an element x that satisfies Δ(x) = x ⊗ 1 + 1 ⊗ x. The primitive elements of a Hopf algebra form a Lie algebra. [10] [11]
If (C1, Δ1, ε1) and (C2, Δ2, ε2) are two coalgebras over the same field K, then a coalgebra morphism from C1 to C2 is a K-linear map f : C1 → C2 such that and . In Sweedler's sumless notation, the first of these properties may be written as:
The composition of two coalgebra morphisms is again a coalgebra morphism, and the coalgebras over K together with this notion of morphism form a category.
A linear subspace I in C is called a coideal if I ⊆ ker(ε) and Δ(I) ⊆ I ⊗ C + C ⊗ I. In that case, the quotient space C/I becomes a coalgebra in a natural fashion.
A subspace D of C is called a subcoalgebra if Δ(D) ⊆ D ⊗ D; in that case, D is itself a coalgebra, with the restriction of ε to D as counit.
The kernel of every coalgebra morphism f : C1 → C2 is a coideal in C1, and the image is a subcoalgebra of C2. The common isomorphism theorems are valid for coalgebras, so for instance C1/ker(f) is isomorphic to im(f).
If A is a finite-dimensional unital associative K-algebra, then A∗ is a finite-dimensional coalgebra, and indeed every finite-dimensional coalgebra arises in this fashion from some finite-dimensional algebra (namely from the coalgebra's K-dual). Under this correspondence, the commutative finite-dimensional algebras correspond to the cocommutative finite-dimensional coalgebras. So in the finite-dimensional case, the theories of algebras and of coalgebras are dual; studying one is equivalent to studying the other. However, relations diverge in the infinite-dimensional case: while the K-dual of every coalgebra is an algebra, the K-dual of an infinite-dimensional algebra need not be a coalgebra.
Every coalgebra is the sum of its finite-dimensional subcoalgebras, something that is not true for algebras. Abstractly, coalgebras are generalizations, or duals, of finite-dimensional unital associative algebras.
Corresponding to the concept of representation for algebras is a corepresentation or comodule.
In mathematics, the exterior algebra or Grassmann algebra of a vector space is an associative algebra that contains which has a product, called exterior product or wedge product and denoted with , such that for every vector in The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol and the fact that the product of two elements of is "outside"
In mathematics, a bialgebra over a field K is a vector space over K which is both a unital associative algebra and a counital coassociative coalgebra. The algebraic and coalgebraic structures are made compatible with a few more axioms. Specifically, the comultiplication and the counit are both unital algebra homomorphisms, or equivalently, the multiplication and the unit of the algebra both are coalgebra morphisms.
In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antihomomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.
In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.
In mathematics, the tensor algebra of a vector space V, denoted T(V) or T•(V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product. It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property (see below).
In abstract algebra, a representation of a Hopf algebra is a representation of its underlying associative algebra. That is, a representation of a Hopf algebra H over a field K is a K-vector space V with an action H × V → V usually denoted by juxtaposition (that is, the image of (h, v) is written hv). The vector space V is called an H-module.
In mathematics, a comodule or corepresentation is a concept dual to a module. The definition of a comodule over a coalgebra is formed by dualizing the definition of a module over an associative algebra.
In mathematics, especially in the fields of representation theory and module theory, a Frobenius algebra is a finite-dimensional unital associative algebra with a special kind of bilinear form which gives the algebras particularly nice duality theories. Frobenius algebras began to be studied in the 1930s by Richard Brauer and Cecil Nesbitt and were named after Georg Frobenius. Tadashi Nakayama discovered the beginnings of a rich duality theory, . Jean Dieudonné used this to characterize Frobenius algebras. Frobenius algebras were generalized to quasi-Frobenius rings, those Noetherian rings whose right regular representation is injective. In recent times, interest has been renewed in Frobenius algebras due to connections to topological quantum field theory.
In mathematics, a Hopf algebra, H, is quasitriangular if there exists an invertible element, R, of such that
In mathematics, compact quantum groups are generalisations of compact groups, where the commutative -algebra of continuous complex-valued functions on a compact group is generalised to an abstract structure on a not-necessarily commutative unital -algebra, which plays the role of the "algebra of continuous complex-valued functions on the compact quantum group".
In mathematics, quasi-bialgebras are a generalization of bialgebras: they were first defined by the Ukrainian mathematician Vladimir Drinfeld in 1990. A quasi-bialgebra differs from a bialgebra by having coassociativity replaced by an invertible element which controls the non-coassociativity. One of their key properties is that the corresponding category of modules forms a tensor category.
A quasi-Hopf algebra is a generalization of a Hopf algebra, which was defined by the Russian mathematician Vladimir Drinfeld in 1989.
In category theory, a branch of mathematics, dagger compact categories first appeared in 1989 in the work of Sergio Doplicher and John E. Roberts on the reconstruction of compact topological groups from their category of finite-dimensional continuous unitary representations. They also appeared in the work of John Baez and James Dolan as an instance of semistrict k-tuply monoidal n-categories, which describe general topological quantum field theories, for n = 1 and k = 3. They are a fundamental structure in Samson Abramsky and Bob Coecke's categorical quantum mechanics.
In mathematics, a braided Hopf algebra is a Hopf algebra in a braided monoidal category. The most common braided Hopf algebras are objects in a Yetter–Drinfeld category of a Hopf algebra H, particularly the Nichols algebra of a braided vector space in that category.
In mathematics, Schur algebras, named after Issai Schur, are certain finite-dimensional algebras closely associated with Schur–Weyl duality between general linear and symmetric groups. They are used to relate the representation theories of those two groups. Their use was promoted by the influential monograph of J. A. Green first published in 1980. The name "Schur algebra" is due to Green. In the modular case Schur algebras were used by Gordon James and Karin Erdmann to show that the problems of computing decomposition numbers for general linear groups and symmetric groups are actually equivalent. Schur algebras were used by Friedlander and Suslin to prove finite generation of cohomology of finite group schemes.
In mathematics, in the theory of Hopf algebras, a Hopf algebroid is a generalisation of weak Hopf algebras, certain skew Hopf algebras and commutative Hopf k-algebroids. If k is a field, a commutative k-algebroid is a cogroupoid object in the category of k-algebras; the category of such is hence dual to the category of groupoid k-schemes. This commutative version has been used in 1970-s in algebraic geometry and stable homotopy theory. The generalization of Hopf algebroids and its main part of the structure, associative bialgebroids, to the noncommutative base algebra was introduced by J.-H. Lu in 1996 as a result on work on groupoids in Poisson geometry. They may be loosely thought of as Hopf algebras over a noncommutative base ring, where weak Hopf algebras become Hopf algebras over a separable algebra. It is a theorem that a Hopf algebroid satisfying a finite projectivity condition over a separable algebra is a weak Hopf algebra, and conversely a weak Hopf algebra H is a Hopf algebroid over its separable subalgebra HL. The antipode axioms have been changed by G. Böhm and K. Szlachányi in 2004 for tensor categorical reasons and to accommodate examples associated to depth two Frobenius algebra extensions.
In algebra, the cofree coalgebra of a vector space or module is a coalgebra analog of the free algebra of a vector space. The cofree coalgebra of any vector space over a field exists, though it is more complicated than one might expect by analogy with the free algebra.
In mathematics, weak bialgebras are a generalization of bialgebras that are both algebras and coalgebras but for which the compatibility conditions between the two structures have been "weakened". In the same spirit, weak Hopf algebras are weak bialgebras together with a linear map S satisfying specific conditions; they are generalizations of Hopf algebras.
In algebraic topology, through an algebraic operation (dualization), there is an associated commutative algebra from the noncommutative Steenrod algebras called the dual Steenrod algebra. This dual algebra has a number of surprising benefits, such as being commutative and provided technical tools for computing the Adams spectral sequence in many cases with much ease.
In quantum group and Hopf algebra, the bicrossed product is a process to create new Hopf algebras from the given ones. It's motivated by the Zappa–Szép product of groups. It was first discussed by M. Takeuchi in 1981, and now a general tool for construction of Drinfeld quantum double.