F-coalgebra

Last updated

In mathematics, specifically in category theory, an -coalgebra is a structure defined according to a functor , with specific properties as defined below. For both algebras and coalgebras,[ clarification needed ] a functor is a convenient and general way of organizing a signature. This has applications in computer science: examples of coalgebras include lazy evaluation, infinite data structures, such as streams, and also transition systems.

Contents

-coalgebras are dual to -algebras. Just as the class of all algebras for a given signature and equational theory form a variety, so does the class of all -coalgebras satisfying a given equational theory form a covariety, where the signature is given by .

Definition

Let

be an endofunctor on a category . An -coalgebra is an object of together with a morphism

of , usually written as .

An -coalgebra homomorphism from to another -coalgebra is a morphism

in such that

.

Thus the -coalgebras for a given functor F constitute a category.

Examples

Consider the endofunctor that sends a set to its disjoint union with the singleton set . A coalgebra of this endofunctor is given by , where is the so-called conatural numbers, consisting of the nonnegative integers and also infinity, and the function is given by , for and . In fact, is the terminal coalgebra of this endofunctor.

More generally, fix some set , and consider the functor that sends to . Then an -coalgebra is a finite or infinite stream over the alphabet , where is the set of states and is the state-transition function. Applying the state-transition function to a state may yield two possible results: either an element of together with the next state of the stream, or the element of the singleton set as a separate "final state" indicating that there are no more values in the stream.

In many practical applications, the state-transition function of such a coalgebraic object may be of the form , which readily factorizes into a collection of "selectors", "observers", "methods" . Special cases of practical interest include observers yielding attribute values, and mutator methods of the form taking additional parameters and yielding states. This decomposition is dual to the decomposition of initial -algebras into sums of 'constructors'.

Let P be the power set construction on the category of sets, considered as a covariant functor. The P-coalgebras are in bijective correspondence with sets with a binary relation. Now fix another set, A. Then coalgebras for the endofunctor P(A×(-)) are in bijective correspondence with labelled transition systems, and homomorphisms between coalgebras correspond to functional bisimulations between labelled transition systems.

Applications

In computer science, coalgebra has emerged as a convenient and suitably general way of specifying the behaviour of systems and data structures that are potentially infinite, for example classes in object-oriented programming, streams and transition systems. While algebraic specification deals with functional behaviour, typically using inductive datatypes generated by constructors, coalgebraic specification is concerned with behaviour modelled by coinductive process types that are observable by selectors, much in the spirit of automata theory. An important role is played here by final coalgebras, which are complete sets of possibly infinite behaviours, such as streams. The natural logic to express properties of such systems is coalgebraic modal logic.[ citation needed ]

See also

Related Research Articles

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.

In mathematics, a product is the result of multiplication, or an expression that identifies objects to be multiplied, called factors. For example, 21 is the product of 3 and 7, and is the product of and . When one factor is an integer, the product is called a multiple.

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

<span class="mw-page-title-main">Exterior algebra</span> Algebra of exterior/ wedge products

In mathematics, the exterior algebra or Grassmann algebra of a vector space is an associative algebra that contains which has a product, called exterior product or wedge product and denoted with , such that for every vector in The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol and the fact that the product of two elements of are "outside"

In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field and is an example of a self-dual topological ring.

In category theory, a branch of mathematics, a monad is a monoid in the category of endofunctors of some fixed category. An endofunctor is a functor mapping a category to itself, and a monad is an endofunctor together with two natural transformations required to fulfill certain coherence conditions. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories. Monads are also useful in the theory of datatypes, the denotational semantics of imperative programming languages, and in functional programming languages, allowing languages without mutable state to do things such as simulate for-loops; see Monad.

In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions.

In mathematics, particularly in operator theory and C*-algebra theory, the continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra.

In commutative algebra and field theory, the Frobenius endomorphism is a special endomorphism of commutative rings with prime characteristic p, an important class that includes finite fields. The endomorphism maps every element to its p-th power. In certain contexts it is an automorphism, but this is not true in general.

<i>F</i>-algebra

In mathematics, specifically in category theory, F-algebras generalize the notion of algebraic structure. Rewriting the algebraic laws in terms of morphisms eliminates all references to quantified elements from the axioms, and these algebraic laws may then be glued together in terms of a single functor F, the signature.

In combinatorics, a branch of mathematics, partition regularity is one notion of largeness for a collection of sets.

In mathematics, an initial algebra is an initial object in the category of F-algebras for a given endofunctor F. This initiality provides a general framework for induction and recursion.

<span class="mw-page-title-main">Schwartz space</span> Function space of all functions whose derivatives are rapidly decreasing

In mathematics, Schwartz space is the function space of all functions whose derivatives are rapidly decreasing. This space has the important property that the Fourier transform is an automorphism on this space. This property enables one, by duality, to define the Fourier transform for elements in the dual space of , that is, for tempered distributions. A function in the Schwartz space is sometimes called a Schwartz function.

In mathematics, and more specifically in homological algebra, a resolution is an exact sequence of modules that is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions. However, a finite resolution is one where only finitely many of the objects in the sequence are non-zero; it is usually represented by a finite exact sequence in which the leftmost object or the rightmost object is the zero-object.

In mathematics, a diffiety is a geometrical object which plays the same role in the modern theory of partial differential equations that algebraic varieties play for algebraic equations, that is, to encode the space of solutions in a more conceptual way. The term was coined in 1984 by Alexandre Mikhailovich Vinogradov as portmanteau from differential variety.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

In mathematics, the mean (topological) dimension of a topological dynamical system is a non-negative extended real number that is a measure of the complexity of the system. Mean dimension was first introduced in 1999 by Gromov. Shortly after it was developed and studied systematically by Lindenstrauss and Weiss. In particular they proved the following key fact: a system with finite topological entropy has zero mean dimension. For various topological dynamical systems with infinite topological entropy, the mean dimension can be calculated or at least bounded from below and above. This allows mean dimension to be used to distinguish between systems with infinite topological entropy. Mean dimension is also related to the problem of embedding topological dynamical systems in shift spaces.

In mathematics, a universal space is a certain metric space that contains all metric spaces whose dimension is bounded by some fixed constant. A similar definition exists in topological dynamics.

References