Signature (logic)

Last updated

In logic, especially mathematical logic, a signature lists and describes the non-logical symbols of a formal language. In universal algebra, a signature lists the operations that characterize an algebraic structure. In model theory, signatures are used for both purposes. They are rarely made explicit in more philosophical treatments of logic.

Contents

Definition

Formally, a (single-sorted) signature can be defined as a 4-tuple where and are disjoint sets not containing any other basic logical symbols, called respectively

and a function which assigns a natural number called arity to every function or relation symbol. A function or relation symbol is called -ary if its arity is Some authors define a nullary (-ary) function symbol as constant symbol, otherwise constant symbols are defined separately.

A signature with no function symbols is called a relational signature, and a signature with no relation symbols is called an algebraic signature. [1] A finite signature is a signature such that and are finite. More generally, the cardinality of a signature is defined as

The language of a signature is the set of all well formed sentences built from the symbols in that signature together with the symbols in the logical system.

Other conventions

In universal algebra the word type or similarity type is often used as a synonym for "signature". In model theory, a signature is often called a vocabulary, or identified with the (first-order) language to which it provides the non-logical symbols. However, the cardinality of the language will always be infinite; if is finite then will be .

As the formal definition is inconvenient for everyday use, the definition of a specific signature is often abbreviated in an informal way, as in:

"The standard signature for abelian groups is where is a unary operator."

Sometimes an algebraic signature is regarded as just a list of arities, as in:

"The similarity type for abelian groups is "

Formally this would define the function symbols of the signature as something like (which is binary), (which is unary) and (which is nullary), but in reality the usual names are used even in connection with this convention.

In mathematical logic, very often symbols are not allowed to be nullary,[ citation needed ] so that constant symbols must be treated separately rather than as nullary function symbols. They form a set disjoint from on which the arity function is not defined. However, this only serves to complicate matters, especially in proofs by induction over the structure of a formula, where an additional case must be considered. Any nullary relation symbol, which is also not allowed under such a definition, can be emulated by a unary relation symbol together with a sentence expressing that its value is the same for all elements. This translation fails only for empty structures (which are often excluded by convention). If nullary symbols are allowed, then every formula of propositional logic is also a formula of first-order logic.

An example for an infinite signature uses and to formalize expressions and equations about a vector space over an infinite scalar field where each denotes the unary operation of scalar multiplication by This way, the signature and the logic can be kept single-sorted, with vectors being the only sort. [2]

Use of signatures in logic and algebra

In the context of first-order logic, the symbols in a signature are also known as the non-logical symbols, because together with the logical symbols they form the underlying alphabet over which two formal languages are inductively defined: The set of terms over the signature and the set of (well-formed) formulas over the signature.

In a structure, an interpretation ties the function and relation symbols to mathematical objects that justify their names: The interpretation of an -ary function symbol in a structure with domain is a function and the interpretation of an -ary relation symbol is a relation Here denotes the -fold cartesian product of the domain with itself, and so is in fact an -ary function, and an -ary relation.

Many-sorted signatures

For many-sorted logic and for many-sorted structures, signatures must encode information about the sorts. The most straightforward way of doing this is via symbol types that play the role of generalized arities. [3]

Symbol types

Let be a set (of sorts) not containing the symbols or

The symbol types over are certain words over the alphabet : the relational symbol types and the functional symbol types for non-negative integers and (For the expression denotes the empty word.)

Signature

A (many-sorted) signature is a triple consisting of

See also

Notes

  1. Mokadem, Riad; Litwin, Witold; Rigaux, Philippe; Schwarz, Thomas (September 2007). "Fast nGram-Based String Search Over Data Encoded Using Algebraic Signatures" (PDF). 33rd International Conference on Very Large Data Bases (VLDB). Retrieved 27 February 2019.
  2. George Grätzer (1967). "IV. Universal Algebra". In James C. Abbot (ed.). Trends in Lattice Theory. Princeton/NJ: Van Nostrand. pp. 173–210. Here: p.173.
  3. Many-Sorted Logic, the first chapter in Lecture notes on Decision Procedures, written by Calogero G. Zarba.

Related Research Articles

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the Ancient Greek language: ὁμός meaning "same" and μορφή meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

In logic, mathematics, and computer science, arity is the number of arguments or operands taken by a function, operation or relation. In mathematics, arity may also be called rank, but this word can have many other meanings. In logic and philosophy, arity may also be called adicity and degree. In linguistics, it is usually named valency.

Universal algebra is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study.

In mathematics, an algebraic structure consists of a nonempty set A, a collection of operations on A, and a finite set of identities, known as axioms, that these operations must satisfy.

In database theory, relational algebra is a theory that uses algebraic structures for modeling data, and defining queries on it with a well founded semantics. The theory was introduced by Edgar F. Codd.

In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory.

In mathematical logic, the Löwenheim–Skolem theorem is a theorem on the existence and cardinality of models, named after Leopold Löwenheim and Thoralf Skolem.

In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: The input and output of a truth function are all truth values; a truth function will always output exactly one truth value; and inputting the same truth value(s) will always output the same truth value. The typical example is in propositional logic, wherein a compound statement is constructed using individual statements connected by logical connectives; if the truth value of the compound statement is entirely determined by the truth value(s) of the constituent statement(s), the compound statement is called a truth function, and any logical connectives used are said to be truth functional.

<span class="mw-page-title-main">Restriction (mathematics)</span> Function with a smaller domain

In mathematics, the restriction of a function is a new function, denoted or obtained by choosing a smaller domain for the original function The function is then said to extend

Independence-friendly logic is an extension of classical first-order logic (FOL) by means of slashed quantifiers of the form and , where is a finite set of variables. The intended reading of is "there is a which is functionally independent from the variables in ". IF logic allows one to express more general patterns of dependence between variables than those which are implicit in first-order logic. This greater level of generality leads to an actual increase in expressive power; the set of IF sentences can characterize the same classes of structures as existential second-order logic.

In universal algebra and mathematical logic, a term algebra is a freely generated algebraic structure over a given signature. For example, in a signature consisting of a single binary operation, the term algebra over a set X of variables is exactly the free magma generated by X. Other synonyms for the notion include absolutely free algebra and anarchic algebra.

In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations that are defined on it.

<span class="mw-page-title-main">Operation (mathematics)</span> Addition, multiplication, division, ...

In mathematics, an operation is a function which takes zero or more input values to a well-defined output value. The number of operands is the arity of the operation.

In logic, the formal languages used to create expressions consist of symbols, which can be broadly divided into constants and variables. The constants of a language can further be divided into logical symbols and non-logical symbols.

An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics.

In universal algebra, a clone is a set C of finitary operations on a set A such that

In mathematical logic, a term denotes a mathematical object while a formula denotes a mathematical fact. In particular, terms appear as components of a formula. This is analogous to natural language, where a noun phrase refers to an object and a whole sentence refers to a fact.

References