Racks and quandles

Last updated

In mathematics, racks and quandles are sets with binary operations satisfying axioms analogous to the Reidemeister moves used to manipulate knot diagrams.

Contents

While mainly used to obtain invariants of knots, they can be viewed as algebraic constructions in their own right. In particular, the definition of a quandle axiomatizes the properties of conjugation in a group.

History

In 1943, Mituhisa Takasaki (高崎光久) introduced an algebraic structure which he called a Kei (圭), which would later come to be known as an involutive quandle. [1] His motivation was to find a nonassociative algebraic structure to capture the notion of a reflection in the context of finite geometry. The idea was rediscovered and generalized in an unpublished 1959 correspondence between John Conway and Gavin Wraith, [2] who at the time were undergraduate students at the University of Cambridge. It is here that the modern definitions of quandles and of racks first appear. Wraith had become interested in these structures (which he initially dubbed sequentials) while at school. [3] Conway renamed them wracks, partly as a pun on his colleague's name, and partly because they arise as the remnants (or 'wrack and ruin') of a group when one discards the multiplicative structure and considers only the conjugation structure. The spelling 'rack' has now become prevalent.

These constructs surfaced again in the 1980s: in a 1982 paper by David Joyce [4] (where the term quandle, an arbitrary nonsense word, was coined), [5] in a 1982 paper by Sergei Matveev (under the name distributive groupoids ) [6] and in a 1986 conference paper by Egbert Brieskorn (where they were called automorphic sets ). [7] A detailed overview of racks and their applications in knot theory may be found in the paper by Colin Rourke and Roger Fenn. [8]

Racks

A rack may be defined as a set with a binary operation such that for every the self-distributive law holds:

and for every there exists a unique such that

This definition, while terse and commonly used, is suboptimal for certain purposes because it contains an existential quantifier which is not really necessary. To avoid this, we may write the unique such that as We then have

and thus

and

Using this idea, a rack may be equivalently defined as a set with two binary operations and such that for all

  1. (left self-distributive law)
  2. (right self-distributive law)

It is convenient to say that the element is acting from the left in the expression and acting from the right in the expression The third and fourth rack axioms then say that these left and right actions are inverses of each other. Using this, we can eliminate either one of these actions from the definition of rack. If we eliminate the right action and keep the left one, we obtain the terse definition given initially.

Many different conventions are used in the literature on racks and quandles. For example, many authors prefer to work with just the right action. Furthermore, the use of the symbols and is by no means universal: many authors use exponential notation

and

while many others write

Yet another equivalent definition of a rack is that it is a set where each element acts on the left and right as automorphisms of the rack, with the left action being the inverse of the right one. In this definition, the fact that each element acts as automorphisms encodes the left and right self-distributivity laws, and also these laws:

which are consequences of the definition(s) given earlier.

Quandles

A quandle is defined as an idempotent rack, such that for all

or equivalently

Examples and applications

Every group gives a quandle where the operations come from conjugation:

In fact, every equational law satisfied by conjugation in a group follows from the quandle axioms. So, one can think of a quandle as what is left of a group when we forget multiplication, the identity, and inverses, and only remember the operation of conjugation.

Every tame knot in three-dimensional Euclidean space has a 'fundamental quandle'. To define this, one can note that the fundamental group of the knot complement, or knot group, has a presentation (the Wirtinger presentation) in which the relations only involve conjugation. So, this presentation can also be used as a presentation of a quandle. The fundamental quandle is a very powerful invariant of knots. In particular, if two knots have isomorphic fundamental quandles then there is a homeomorphism of three-dimensional Euclidean space, which may be orientation reversing, taking one knot to the other.

Less powerful but more easily computable invariants of knots may be obtained by counting the homomorphisms from the knot quandle to a fixed quandle Since the Wirtinger presentation has one generator for each strand in a knot diagram, these invariants can be computed by counting ways of labelling each strand by an element of subject to certain constraints. More sophisticated invariants of this sort can be constructed with the help of quandle cohomology.

The Alexander quandles are also important, since they can be used to compute the Alexander polynomial of a knot. Let be a module over the ring of Laurent polynomials in one variable. Then the Alexander quandle is made into a quandle with the left action given by

Racks are a useful generalization of quandles in topology, since while quandles can represent knots on a round linear object (such as rope or a thread), racks can represent ribbons, which may be twisted as well as knotted.

A quandle is said to be involutory if for all

or equivalently,

Any symmetric space gives an involutory quandle, where is the result of 'reflecting through '.

See also

Related Research Articles

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

<span class="mw-page-title-main">Group (mathematics)</span> Set with associative invertible operation

In mathematics, a group is a set with an operation that satisfies the following constraints: the operation is associative and has an identity element, and every element of the set has an inverse element.

<span class="mw-page-title-main">Normal subgroup</span> Subgroup invariant under conjugation

In abstract algebra, a normal subgroup is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup of the group is normal in if and only if for all and The usual notation for this relation is

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Quaternion</span> Noncommutative extension of the complex numbers

In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quaternions is often denoted by H, or in blackboard bold by Although multiplication of quaternions is noncommutative, it gives a definition of the quotient of two vectors in a three-dimensional space. Quaternions are generally represented in the form

In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality

<span class="mw-page-title-main">Solvable group</span> Group with subnormal series where all factors are abelian

In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.

In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-symmetry is an abbreviation of the phrase "charge conjugation symmetry", and is used in discussions of the symmetry of physical laws under charge-conjugation. Other important discrete symmetries are P-symmetry (parity) and T-symmetry.

<span class="mw-page-title-main">Complex conjugate</span> Fundamental operation on complex numbers

In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if and are real numbers then the complex conjugate of is The complex conjugate of is often denoted as or .

<span class="mw-page-title-main">Orthogonal group</span> Type of group in mathematics

In mathematics, the orthogonal group in dimension n, denoted O(n), is the group of distance-preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n × n orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact.

In mathematics, and more specifically in abstract algebra, a *-algebra is a mathematical structure consisting of two involutive ringsR and A, where R is commutative and A has the structure of an associative algebra over R. Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints. However, it may happen that an algebra admits no involution.

In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many naturally occurring modules are not semisimple, hence cannot be decomposed into a direct sum of simple modules. A composition series of a module M is a finite increasing filtration of M by submodules such that the successive quotients are simple and serves as a replacement of the direct sum decomposition of M into its simple constituents.

<span class="mw-page-title-main">Adjoint representation</span> Mathematical term

In mathematics, the adjoint representation of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: .

In abstract algebra, a semiring is an algebraic structure. It is a generalization of a ring, dropping the requirement that each element must have an additive inverse. At the same time, it is a generalization of bounded distributive lattices.

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

<span class="mw-page-title-main">Cross-ratio</span> An invariant under projective transformations

In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points A, B, C, D on a line, their cross ratio is defined as

The name paravector is used for the combination of a scalar and a vector in any Clifford algebra, known as geometric algebra among physicists.

In mathematical physics, the gamma matrices, also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin particles. Gamma matrices were introduced by Paul Dirac in 1928.

In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.

In mathematics, in the theory of Hopf algebras, a Hopf algebroid is a generalisation of weak Hopf algebras, certain skew Hopf algebras and commutative Hopf k-algebroids. If k is a field, a commutative k-algebroid is a cogroupoid object in the category of k-algebras; the category of such is hence dual to the category of groupoid k-schemes. This commutative version has been used in 1970-s in algebraic geometry and stable homotopy theory. The generalization of Hopf algebroids and its main part of the structure, associative bialgebroids, to the noncommutative base algebra was introduced by J.-H. Lu in 1996 as a result on work on groupoids in Poisson geometry. They may be loosely thought of as Hopf algebras over a noncommutative base ring, where weak Hopf algebras become Hopf algebras over a separable algebra. It is a theorem that a Hopf algebroid satisfying a finite projectivity condition over a separable algebra is a weak Hopf algebra, and conversely a weak Hopf algebra H is a Hopf algebroid over its separable subalgebra HL. The antipode axioms have been changed by G. Böhm and K. Szlachányi in 2004 for tensor categorical reasons and to accommodate examples associated to depth two Frobenius algebra extensions.

References

  1. Takasaki, Mituhisa (1943). "Abstractions of symmetric functions". Tohoku Mathematical Journal . 49: 143–207.
  2. Conway, John H.; Wraith, Gavin (1959). "(unpublished correspondence)".{{cite journal}}: Cite journal requires |journal= (help)
  3. Wraith, Gavin. "A Personal Story about Knots". Archived from the original on 2006-03-13.
  4. Joyce, David (1982). "A classifying invariant of knots: the knot quandle". Journal of Pure and Applied Algebra . 23: 37–65. doi: 10.1016/0022-4049(82)90077-9 .
  5. Baez, John. "The Origin of the word 'Quandle'". The n-Category Cafe. Retrieved 5 June 2015.
  6. Matveev, Sergei (1984). "Distributive groupoids in knot theory". Math. USSR Sbornik . 47 (1): 73–83. Bibcode:1984SbMat..47...73M. doi:10.1070/SM1984v047n01ABEH002630.
  7. Brieskorn, Egbert (1988). "Automorphic sets and braids and singularities". Braids. Contemporary Mathematics. Vol. 78. pp. 45–115. doi:10.1090/conm/078/975077. ISBN   9780821850886.
  8. Rourke, Colin; Fenn, Roger (1992). "Racks and links in codimension 2". Journal of Knot Theory and Its Ramifications . 1 (4): 343–406. doi:10.1142/S0218216592000203.