This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(February 2024) |
In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure that resembles a group in the sense that "division" is always possible. Quasigroups differ from groups mainly in that the associative and identity element properties are optional. In fact, a nonempty associative quasigroup is a group. [1] [2]
A quasigroup that has an identity element is called a loop.
Algebraic structures |
---|
There are at least two structurally equivalent formal definitions of quasigroup:
The homomorphic image of a quasigroup that is defined with a single binary operation, however, need not be a quasigroup, in contrast to a quasigroup as having three primitive operations. [3] We begin with the first definition.
A quasigroup(Q, ∗) is a non-empty set Q with a binary operation ∗ (that is, a magma, indicating that a quasigroup has to satisfy closure property), obeying the Latin square property. This states that, for each a and b in Q, there exist unique elements x and y in Q such that both
hold. (In other words: Each element of the set occurs exactly once in each row and exactly once in each column of the quasigroup's multiplication table, or Cayley table. This property ensures that the Cayley table of a finite quasigroup, and, in particular, a finite group, is a Latin square.) The requirement that x and y be unique can be replaced by the requirement that the magma be cancellative. [4] [a]
The unique solutions to these equations are written x = a \ b and y = b / a. The operations '\' and '/' are called, respectively, left division and right division. With regard to the Cayley table, the first equation (left division) means that the b entry in the a row is in the x column while the second equation (right division) means that the b entry in the a column is in the y row.
The empty set equipped with the empty binary operation satisfies this definition of a quasigroup. Some authors accept the empty quasigroup but others explicitly exclude it. [5] [6]
Given some algebraic structure, an identity is an equation in which all variables are tacitly universally quantified, and in which all operations are among the primitive operations proper to the structure. Algebraic structures that satisfy axioms that are given solely by identities are called a variety. Many standard results in universal algebra hold only for varieties. Quasigroups form a variety if left and right division are taken as primitive.
A right-quasigroup(Q, ∗, /) is a type (2, 2) algebra that satisfy both identities:
A left-quasigroup(Q, ∗, \) is a type (2, 2) algebra that satisfy both identities:
A quasigroup(Q, ∗, \, /) is a type (2, 2, 2) algebra (i.e., equipped with three binary operations) that satisfy the identities: [b]
In other words: Multiplication and division in either order, one after the other, on the same side by the same element, have no net effect.
Hence if (Q, ∗) is a quasigroup according to the definition of the previous section, then (Q, ∗, \, /) is the same quasigroup in the sense of universal algebra. And vice versa: if (Q, ∗, \, /) is a quasigroup according to the sense of universal algebra, then (Q, ∗) is a quasigroup according to the first definition.
A loop is a quasigroup with an identity element; that is, an element, e, such that
It follows that the identity element, e, is unique, and that every element of Q has unique left and right inverses (which need not be the same).
A quasigroup with an idempotent element is called a pique ("pointed idempotent quasigroup"); this is a weaker notion than a loop but common nonetheless because, for example, given an abelian group, (A, +), taking its subtraction operation as quasigroup multiplication yields a pique (A, −) with the group identity (zero) turned into a "pointed idempotent". (That is, there is a principal isotopy (x, y, z) ↦ (x, −y, z).)
A loop that is associative is a group. A group can have a strictly nonassociative pique isotope, but it cannot have a strictly nonassociative loop isotope.
There are weaker associativity properties that have been given special names.
For instance, a Bol loop is a loop that satisfies either:
or else
A loop that is both a left and right Bol loop is a Moufang loop . This is equivalent to any one of the following single Moufang identities holding for all x, y, z:
According to Jonathan D. H. Smith, "loops" were named after the Chicago Loop, as their originators were studying quasigroups in Chicago at the time. [9]
Smith (2007) names the following important properties and subclasses:
A quasigroup is semisymmetric if any of the following equivalent identities hold for all x, y: [c]
Although this class may seem special, every quasigroup Q induces a semisymmetric quasigroup QΔ on the direct product cube Q3 via the following operation:
where "//" and "\\" are the conjugate division operations given by y // x = x / y and y \\ x = x \ y.
This section needs expansion. You can help by adding to it. (February 2015) |
A narrower class is a totally symmetric quasigroup (sometimes abbreviated TS-quasigroup) in which all conjugates coincide as one operation: x ∗ y = x / y = x \ y. Another way to define (the same notion of) totally symmetric quasigroup is as a semisymmetric quasigroup that is commutative, i.e. x ∗ y = y ∗ x.
Idempotent total symmetric quasigroups are precisely (i.e. in a bijection with) Steiner triples, so such a quasigroup is also called a Steiner quasigroup, and sometimes the latter is even abbreviated as squag. The term sloop refers to an analogue for loops, namely, totally symmetric loops that satisfy x ∗ x = 1 instead of x ∗ x = x. Without idempotency, total symmetric quasigroups correspond to the geometric notion of extended Steiner triple, also called Generalized Elliptic Cubic Curve (GECC).
A quasigroup (Q, ∗) is called weakly totally anti-symmetric if for all c, x, y ∈ Q, the following implication holds. [11]
A quasigroup (Q, ∗) is called totally anti-symmetric if, in addition, for all x, y ∈ Q, the following implication holds: [11]
This property is required, for example, in the Damm algorithm.
Quasigroups have the cancellation property: if ab = ac, then b = c. This follows from the uniqueness of left division of ab or ac by a. Similarly, if ba = ca, then b = c.
The Latin square property of quasigroups implies that, given any two of the three variables in xy = z, the third variable is uniquely determined.
The definition of a quasigroup can be treated as conditions on the left and right multiplication operators Lx, Rx : Q → Q, defined by
The definition says that both mappings are bijections from Q to itself. A magma Q is a quasigroup precisely when all these operators, for every x in Q, are bijective. The inverse mappings are left and right division, that is,
In this notation the identities among the quasigroup's multiplication and division operations (stated in the section on universal algebra) are
where id denotes the identity mapping on Q.
The multiplication table of a finite quasigroup is a Latin square: an n × n table filled with n different symbols in such a way that each symbol occurs exactly once in each row and exactly once in each column.
Conversely, every Latin square can be taken as the multiplication table of a quasigroup in many ways: the border row (containing the column headers) and the border column (containing the row headers) can each be any permutation of the elements. See Small Latin squares and quasigroups .
For a countably infinite quasigroup Q, it is possible to imagine an infinite array in which every row and every column corresponds to some element q of Q, and where the element a ∗ b is in the row corresponding to a and the column responding to b. In this situation too, the Latin square property says that each row and each column of the infinite array will contain every possible value precisely once.
For an uncountably infinite quasigroup, such as the group of non-zero real numbers under multiplication, the Latin square property still holds, although the name is somewhat unsatisfactory, as it is not possible to produce the array of combinations to which the above idea of an infinite array extends since the real numbers cannot all be written in a sequence. (This is somewhat misleading however, as the reals can be written in a sequence of length , assuming the well-ordering theorem.)
The binary operation of a quasigroup is invertible in the sense that both Lx and Rx, the left and right multiplication operators, are bijective, and hence invertible.
Every loop element has a unique left and right inverse given by
A loop is said to have (two-sided) inverses if xλ = xρ for all x. In this case the inverse element is usually denoted by x−1.
There are some stronger notions of inverses in loops that are often useful:
A loop has the inverse property if it has both the left and right inverse properties. Inverse property loops also have the antiautomorphic and weak inverse properties. In fact, any loop that satisfies any two of the above four identities has the inverse property and therefore satisfies all four.
Any loop that satisfies the left, right, or antiautomorphic inverse properties automatically has two-sided inverses.
A quasigroup or loop homomorphism is a map f : Q → P between two quasigroups such that f(xy) = f(x)f(y). Quasigroup homomorphisms necessarily preserve left and right division, as well as identity elements (if they exist).
Let Q and P be quasigroups. A quasigroup homotopy from Q to P is a triple (α, β, γ) of maps from Q to P such that
for all x, y in Q. A quasigroup homomorphism is just a homotopy for which the three maps are equal.
An isotopy is a homotopy for which each of the three maps (α, β, γ) is a bijection. Two quasigroups are isotopic if there is an isotopy between them. In terms of Latin squares, an isotopy (α, β, γ) is given by a permutation of rows α, a permutation of columns β, and a permutation on the underlying element set γ.
An autotopy is an isotopy from a quasigroup to itself. The set of all autotopies of a quasigroup forms a group with the automorphism group as a subgroup.
Every quasigroup is isotopic to a loop. If a loop is isotopic to a group, then it is isomorphic to that group and thus is itself a group. However, a quasigroup that is isotopic to a group need not be a group. For example, the quasigroup on R with multiplication given by (x, y) ↦ (x + y)/2 is isotopic to the additive group (R, +), but is not itself a group as it has no identity element. Every medial quasigroup is isotopic to an abelian group by the Bruck–Toyoda theorem.
Left and right division are examples of forming a quasigroup by permuting the variables in the defining equation. From the original operation ∗ (i.e., x ∗ y = z) we can form five new operations: x o y := y ∗ x (the opposite operation), / and \, and their opposites. That makes a total of six quasigroup operations, which are called the conjugates or parastrophes of ∗. Any two of these operations are said to be "conjugate" or "parastrophic" to each other (and to themselves).
If the set Q has two quasigroup operations, ∗ and ·, and one of them is isotopic to a conjugate of the other, the operations are said to be isostrophic to each other. There are also many other names for this relation of "isostrophe", e.g., paratopy.
An n-ary quasigroup is a set with an n-ary operation, (Q, f) with f : Qn → Q, such that the equation f(x1, ..., xn) = y has a unique solution for any one variable if all the other n variables are specified arbitrarily. Polyadic or multiary means n-ary for some nonnegative integer n.
A 0-ary, or nullary, quasigroup is just a constant element of Q. A 1-ary, or unary, quasigroup is a bijection of Q to itself. A binary, or 2-ary, quasigroup is an ordinary quasigroup.
An example of a multiary quasigroup is an iterated group operation, y = x1 · x2 · ··· · xn; it is not necessary to use parentheses to specify the order of operations because the group is associative. One can also form a multiary quasigroup by carrying out any sequence of the same or different group or quasigroup operations, if the order of operations is specified.
There exist multiary quasigroups that cannot be represented in any of these ways. An n-ary quasigroup is irreducible if its operation cannot be factored into the composition of two operations in the following way:
where 1 ≤ i<j ≤ n and (i, j) ≠ (1, n). Finite irreducible n-ary quasigroups exist for all n > 2; see Akivis & Goldberg (2001) for details.
An n-ary quasigroup with an n-ary version of associativity is called an n-ary group.
The number of isomorphism classes of small quasigroups (sequence A057991 in the OEIS ) and loops (sequence A057771 in the OEIS ) is given here: [14]
Order | Number of quasigroups | Number of loops |
---|---|---|
0 | 1 | 0 |
1 | 1 | 1 |
2 | 1 | 1 |
3 | 5 | 1 |
4 | 35 | 2 |
5 | 1411 | 6 |
6 | 1130531 | 109 |
7 | 12198455835 | 23746 |
8 | 2697818331680661 | 106228849 |
9 | 15224734061438247321497 | 9365022303540 |
10 | 2750892211809150446995735533513 | 20890436195945769617 |
11 | 19464657391668924966791023043937578299025 | 1478157455158044452849321016 |
In abstract algebra, an alternative algebra is an algebra in which multiplication need not be associative, only alternative. That is, one must have
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.
In mathematics, the concept of an inverse element generalises the concepts of opposite and reciprocal of numbers.
Universal algebra is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study.
In mathematics, an algebraic structure consists of a nonempty set A, a collection of operations on A, and a finite set of identities that these operations must satisfy.
In abstract algebra, a magma, binar, or, rarely, groupoid is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation that must be closed by definition. No other properties are imposed.
In abstract algebra, a medial magma or medial groupoid is a magma or groupoid (that is, a set with a binary operation) that satisfies the identity
In mathematics, a Moufang loop is a special kind of algebraic structure. It is similar to a group in many ways but need not be associative. Moufang loops were introduced by Ruth Moufang. Smooth Moufang loops have an associated algebra, the Malcev algebra, similar in some ways to how a Lie group has an associated Lie algebra.
In mathematics, and more specifically in abstract algebra, a rng is an algebraic structure satisfying the same properties as a ring, but without assuming the existence of a multiplicative identity. The term rng is meant to suggest that it is a ring without i, that is, without the requirement for an identity element.
In mathematics, many types of algebraic structures are studied. Abstract algebra is primarily the study of specific algebraic structures and their properties. Algebraic structures may be viewed in different ways, however the common starting point of algebra texts is that an algebraic object incorporates one or more sets with one or more binary operations or unary operations satisfying a collection of axioms.
Boolean algebra is a mathematically rich branch of abstract algebra. Stanford Encyclopaedia of Philosophy defines Boolean algebra as 'the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation.' Just as group theory deals with groups, and linear algebra with vector spaces, Boolean algebras are models of the equational theory of the two values 0 and 1. Common to Boolean algebras, groups, and vector spaces is the notion of an algebraic structure, a set closed under some operations satisfying certain equations.
In abstract algebra, a semiheap is an algebraic structure consisting of a non-empty set H with a ternary operation denoted that satisfies a modified associativity property:
A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (ab)(cd), (a(bc))d and a(b(cd)) may all yield different answers.
In the mathematical field of abstract algebra, isotopy is an equivalence relation used to classify the algebraic notion of loop.
In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group:
In mathematics, specifically ring theory, the notion of quasiregularity provides a computationally convenient way to work with the Jacobson radical of a ring. In this article, we primarily concern ourselves with the notion of quasiregularity for unital rings. However, one section is devoted to the theory of quasiregularity in non-unital rings, which constitutes an important aspect of noncommutative ring theory.
In mathematics, an isotopy from a possibly non-associative algebra A to another is a triple of bijective linear maps (a, b, c) such that if xy = z then a(x)b(y) = c(z). This is similar to the definition of an isotopy of loops, except that it must also preserve the linear structure of the algebra. For a = b = c this is the same as an isomorphism. The autotopy group of an algebra is the group of all isotopies to itself (sometimes called autotopies), which contains the group of automorphisms as a subgroup.