Quasigroup

Last updated
Algebraic structures between magmas and groups: A quasigroup is a magma with the type of divisibility given by the Latin square property. A loop is a quasigroup with an identity element. Magma to group4.svg
Algebraic structures between magmas and groups: A quasigroup is a magma with the type of divisibility given by the Latin square property. A loop is a quasigroup with an identity element.

In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure resembling a group in the sense that "division" is always possible. Quasigroups differ from groups mainly in that the associative and identity element properties are optional.

Contents

A quasigroup with an identity element is called a loop.

Definitions

There are at least two structurally equivalent formal definitions of quasigroup. One defines a quasigroup as a set with one binary operation, and the other, from universal algebra, defines a quasigroup as having three primitive operations. The homomorphic image of a quasigroup defined with a single binary operation, however, need not be a quasigroup. [1] We begin with the first definition.

Algebra

A quasigroup(Q, ∗) is a non-empty set Q with a binary operation ∗ (that is, a magma, indicating that a quasigroup has to satisfy closure property), obeying the Latin square property. This states that, for each a and b in Q, there exist unique elements x and y in Q such that both

ax = b
ya = b

hold. (In other words: Each element of the set occurs exactly once in each row and exactly once in each column of the quasigroup's multiplication table, or Cayley table. This property ensures that the Cayley table of a finite quasigroup, and, in particular, a finite group, is a Latin square.) The requirement that x and y be unique can be replaced by the requirement that the magma be cancellative. [2] [lower-alpha 1]

The unique solutions to these equations are written x = a \ b and y = b / a. The operations '\' and '/' are called, respectively, left division and right division. With regard to the Cayley table, the first equation (left division) means that the b entry in the a row is in the x column while the second equation (right division) means that the b entry in the a column is in the y row.

The empty set equipped with the empty binary operation satisfies this definition of a quasigroup. Some authors accept the empty quasigroup but others explicitly exclude it. [3] [4]

Universal algebra

Given some algebraic structure, an identity is an equation in which all variables are tacitly universally quantified, and in which all operations are among the primitive operations proper to the structure. Algebraic structures that satisfy axioms that are given solely by identities are called a variety. Many standard results in universal algebra hold only for varieties. Quasigroups form a variety if left and right division are taken as primitive.

A right-quasigroup(Q, ∗, /) is a type (2, 2) algebra that satisfy both identities:

y = (y / x) ∗ x
y = (yx) / x.

A left-quasigroup(Q, ∗, \) is a type (2, 2) algebra that satisfy both identities:

y = x ∗ (x \ y)
y = x \ (xy).

A quasigroup(Q, ∗, \, /) is a type (2, 2, 2) algebra (i.e., equipped with three binary operations) that satisfy the identities: [lower-alpha 2]

y = (y / x) ∗ x
y = (yx) / x
y = x ∗ (x \ y)
y = x \ (xy).

In other words: Multiplication and division in either order, one after the other, on the same side by the same element, have no net effect.

Hence if (Q, ∗) is a quasigroup according to the definition of the previous section, then (Q, ∗, \, /) is the same quasigroup in the sense of universal algebra. And vice versa: if (Q, ∗, \, /) is a quasigroup according to the sense of universal algebra, then (Q, ∗) is a quasigroup according to the first definition.

Loops

A loop is a quasigroup with an identity element; that is, an element, e, such that

xe = x and ex = x for all x in Q.

It follows that the identity element, e, is unique, and that every element of Q has unique left and right inverses (which need not be the same).

A quasigroup with an idempotent element is called a pique ("pointed idempotent quasigroup"); this is a weaker notion than a loop but common nonetheless because, for example, given an abelian group, (A, +), taking its subtraction operation as quasigroup multiplication yields a pique (A, −) with the group identity (zero) turned into a "pointed idempotent". (That is, there is a principal isotopy (x, y, z) ↦ (x, −y, z).)

A loop that is associative is a group. A group can have a strictly nonassociative pique isotope, but it cannot have a strictly nonassociative loop isotope.

There are weaker associativity properties that have been given special names.

For instance, a Bol loop is a loop that satisfies either:

x ∗ (y ∗ (xz)) = (x ∗ (yx)) ∗ z     for each x, y and z in Q (a left Bol loop),

or else

((zx) ∗ y) ∗ x = z ∗ ((xy) ∗ x)     for each x, y and z in Q (a right Bol loop).

A loop that is both a left and right Bol loop is a Moufang loop . This is equivalent to any one of the following single Moufang identities holding for all x, y, z:

x ∗ (y ∗ (xz)) = ((xy) ∗ x) ∗ z,
z ∗ (x ∗ (yx)) = ((zx) ∗ y) ∗ x,
(xy) ∗ (zx) = x ∗ ((yz) ∗ x), or
(xy) ∗ (zx) = (x ∗ (yz)) ∗ x.

According to Jonathan D. H. Smith, "loops" were named after the Chicago Loop, as their originators were studying quasigroups in Chicago at the time. [7]

Symmetries

( Smith 2007 ) names the following important properties and subclasses:

Semisymmetry

A quasigroup is semisymmetric if any of the following equivalent identities hold: [lower-alpha 3]

xy = y / x
yx = x \ y
x = (yx) ∗ y
x = y ∗ (xy).

Although this class may seem special, every quasigroup Q induces a semisymmetric quasigroup QΔ on the direct product cube Q3 via the following operation:

(x1, x2, x3) ⋅ (y1, y2, y3) = (y3 / x2, y1 \ x3, x1y2) = (x2 // y3, x3 \\ y1, x1y2),

where "//" and "\\" are the conjugate division operations given by y // x = x / y and y \\ x = x \ y.

Triality

A quasigroup may exhibit semisymmetric triality. [8]

Total symmetry

A narrower class is a totally symmetric quasigroup (sometimes abbreviated TS-quasigroup) in which all conjugates coincide as one operation: xy = x / y = x \ y. Another way to define (the same notion of) totally symmetric quasigroup is as a semisymmetric quasigroup that is commutative, i.e. xy = yx.

Idempotent total symmetric quasigroups are precisely (i.e. in a bijection with) Steiner triples, so such a quasigroup is also called a Steiner quasigroup, and sometimes the latter is even abbreviated as squag. The term sloop refers to an analogue for loops, namely, totally symmetric loops that satisfy xx = 1 instead of xx = x. Without idempotency, total symmetric quasigroups correspond to the geometric notion of extended Steiner triple, also called Generalized Elliptic Cubic Curve (GECC).

Total antisymmetry

A quasigroup (Q, ∗) is called weakly totally anti-symmetric if for all c, x, yQ, the following implication holds. [9]

(cx) ∗ y = (cy) ∗ x implies that x = y.

A quasigroup (Q, ∗) is called totally anti-symmetric if, in addition, for all x, yQ, the following implication holds: [9]

xy = yx implies that x = y.

This property is required, for example, in the Damm algorithm.

Examples

Then, (F4, ∗) is a commutative Moufang loop that is not a group. [11]

Properties

In the remainder of the article we shall denote quasigroup multiplication simply by juxtaposition.

Quasigroups have the cancellation property: if ab = ac, then b = c. This follows from the uniqueness of left division of ab or ac by a. Similarly, if ba = ca, then b = c.

The Latin square property of quasigroups implies that, given any two of the three variables in xy = z, the third variable is uniquely determined.

Multiplication operators

The definition of a quasigroup can be treated as conditions on the left and right multiplication operators Lx, Rx : QQ, defined by

The definition says that both mappings are bijections from Q to itself. A magma Q is a quasigroup precisely when all these operators, for every x in Q, are bijective. The inverse mappings are left and right division, that is,

In this notation the identities among the quasigroup's multiplication and division operations (stated in the section on universal algebra) are

where id denotes the identity mapping on Q.

Latin squares

A Latin square, the unbordered multiplication table for a quasigroup whose 10 elements are the digits 0-9. 10 x10 lateinisches quadrat.svg
A Latin square, the unbordered multiplication table for a quasigroup whose 10 elements are the digits 0–9.

The multiplication table of a finite quasigroup is a Latin square: an n × n table filled with n different symbols in such a way that each symbol occurs exactly once in each row and exactly once in each column.

Conversely, every Latin square can be taken as the multiplication table of a quasigroup in many ways: the border row (containing the column headers) and the border column (containing the row headers) can each be any permutation of the elements. See small Latin squares and quasigroups.

Infinite quasigroups

For a countably infinite quasigroup Q, it is possible to imagine an infinite array in which every row and every column corresponds to some element q of Q, and where the element ab is in the row corresponding to a and the column responding to b. In this situation too, the Latin square property says that each row and each column of the infinite array will contain every possible value precisely once.

For an uncountably infinite quasigroup, such as the group of non-zero real numbers under multiplication, the Latin square property still holds, although the name is somewhat unsatisfactory, as it is not possible to produce the array of combinations to which the above idea of an infinite array extends since the real numbers cannot all be written in a sequence. (This is somewhat misleading however, as the reals can be written in a sequence of length , assuming the well-ordering theorem.)

Inverse properties

The binary operation of a quasigroup is invertible in the sense that both and , the left and right multiplication operators, are bijective, and hence invertible.

Every loop element has a unique left and right inverse given by

A loop is said to have (two-sided) inverses if for all x. In this case the inverse element is usually denoted by .

There are some stronger notions of inverses in loops that are often useful:

A loop has the inverse property if it has both the left and right inverse properties. Inverse property loops also have the antiautomorphic and weak inverse properties. In fact, any loop that satisfies any two of the above four identities has the inverse property and therefore satisfies all four.

Any loop that satisfies the left, right, or antiautomorphic inverse properties automatically has two-sided inverses.

Morphisms

A quasigroup or loop homomorphism is a map f : QP between two quasigroups such that f(xy) = f(x)f(y). Quasigroup homomorphisms necessarily preserve left and right division, as well as identity elements (if they exist).

Homotopy and isotopy

Let Q and P be quasigroups. A quasigroup homotopy from Q to P is a triple (α, β, γ) of maps from Q to P such that

for all x, y in Q. A quasigroup homomorphism is just a homotopy for which the three maps are equal.

An isotopy is a homotopy for which each of the three maps (α, β, γ) is a bijection. Two quasigroups are isotopic if there is an isotopy between them. In terms of Latin squares, an isotopy (α, β, γ) is given by a permutation of rows α, a permutation of columns β, and a permutation on the underlying element set γ.

An autotopy is an isotopy from a quasigroup to itself. The set of all autotopies of a quasigroup forms a group with the automorphism group as a subgroup.

Every quasigroup is isotopic to a loop. If a loop is isotopic to a group, then it is isomorphic to that group and thus is itself a group. However, a quasigroup that is isotopic to a group need not be a group. For example, the quasigroup on R with multiplication given by (x, y) ↦ (x + y)/2 is isotopic to the additive group (R, +), but is not itself a group as it has no identity element. Every medial quasigroup is isotopic to an abelian group by the Bruck–Toyoda theorem.

Conjugation (parastrophe)

Left and right division are examples of forming a quasigroup by permuting the variables in the defining equation. From the original operation ∗ (i.e., xy = z) we can form five new operations: x o y := yx (the opposite operation), / and \, and their opposites. That makes a total of six quasigroup operations, which are called the conjugates or parastrophes of ∗. Any two of these operations are said to be "conjugate" or "parastrophic" to each other (and to themselves).

Isostrophe (paratopy)

If the set Q has two quasigroup operations, ∗ and ·, and one of them is isotopic to a conjugate of the other, the operations are said to be isostrophic to each other. There are also many other names for this relation of "isostrophe", e.g., paratopy.

Generalizations

Polyadic or multiary quasigroups

An n-ary quasigroup is a set with an n-ary operation, (Q, f) with f : QnQ, such that the equation f(x1,...,xn) = y has a unique solution for any one variable if all the other n variables are specified arbitrarily. Polyadic or multiary means n-ary for some nonnegative integer n.

A 0-ary, or nullary, quasigroup is just a constant element of Q. A 1-ary, or unary, quasigroup is a bijection of Q to itself. A binary, or 2-ary, quasigroup is an ordinary quasigroup.

An example of a multiary quasigroup is an iterated group operation, y = x1 · x2 · ··· · xn; it is not necessary to use parentheses to specify the order of operations because the group is associative. One can also form a multiary quasigroup by carrying out any sequence of the same or different group or quasigroup operations, if the order of operations is specified.

There exist multiary quasigroups that cannot be represented in any of these ways. An n-ary quasigroup is irreducible if its operation cannot be factored into the composition of two operations in the following way:

where 1 ≤ i<jn and (i, j) ≠ (1, n). Finite irreducible n-ary quasigroups exist for all n > 2; see Akivis and Goldberg (2001) for details.

An n-ary quasigroup with an n-ary version of associativity is called an n-ary group.

Number of small quasigroups and loops

The number of isomorphism classes of small quasigroups (sequence A057991 in the OEIS ) and loops (sequence A057771 in the OEIS ) is given here: [12]

Order Number of quasigroups Number of loops
0 1 0
1 1 1
2 1 1
3 5 1
4 35 2
5 1,411 6
6 1,130,531 109
7 12,198,455,835 23,746
8 2,697,818,331,680,661 106,228,849
9 15,224,734,061,438,247,321,497 9,365,022,303,540
10 2,750,892,211,809,150,446,995,735,533,513 20,890,436,195,945,769,617
11 19,464,657,391,668,924,966,791,023,043,937,578,299,025 1,478,157,455,158,044,452,849,321,016

See also

Notes

  1. For clarity, cancellativity alone is insufficient: the requirement for existence of a solution must be retained.
  2. There are six identities that these operations satisfy, namely [5]
    y = (y / x) ∗ x, y = x \ (xy), y = x / (y \ x)
    y = (yx) / x, y = x ∗ (x \ y), y = (x / y) \ x.
    Of these, the first three imply the last three, and vice versa, leading to either set of three identities being sufficient to equationally specify a quasigroup. [6]
  3. The first two equations are equivalent to the last two by direct application of the cancellation property of quasigroups. The last pair are shown to be equivalent by setting x = ((xy) ∗ x) ∗ (xy) = y ∗ (xy).

Related Research Articles

<span class="mw-page-title-main">Associative property</span> Property of a mathematical operation

In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs.

In abstract algebra, an alternative algebra is an algebra in which multiplication need not be associative, only alternative. That is, one must have

In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the Ancient Greek language: ὁμός meaning "same" and μορφή meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

<span class="mw-page-title-main">Semigroup</span> Algebraic structure consisting of a set with an associative binary operation

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.

In mathematics, the concept of an inverse element generalises the concepts of opposite and reciprocal of numbers.

Universal algebra is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study.

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

<span class="mw-page-title-main">Exponentiation</span> Arithmetic operation

In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:

In abstract algebra, a magma, binar, or, rarely, groupoid is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation that must be closed by definition. No other properties are imposed.

In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such that

In mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation. By contrast, for operations with the associative property, any order of evaluation gives the same result. The identity is named after the German mathematician Carl Gustav Jacob Jacobi.

<span class="mw-page-title-main">Wheel theory</span> Algebra where division is always defined

A wheel is a type of algebra where division is always defined. In particular, division by zero is meaningful. The real numbers can be extended to a wheel, as can any commutative ring.

In mathematics, a Moufang loop is a special kind of algebraic structure. It is similar to a group in many ways but need not be associative. Moufang loops were introduced by Ruth Moufang. Smooth Moufang loops have an associated algebra, the Malcev algebra, similar in some ways to how a Lie group has an associated Lie algebra.

In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras, and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called finitary algebraic categories.

In abstract algebra, a semiheap is an algebraic structure consisting of a non-empty set H with a ternary operation denoted that satisfies a modified associativity property:

A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × AA which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (ab)(cd), (a(bc))d and a(b(cd)) may all yield different answers.

In the mathematical field of abstract algebra, isotopy is an equivalence relation used to classify the algebraic notion of loop.

In ring theory, a branch of mathematics, a ring R is a polynomial identity ring if there is, for some N > 0, an element P ≠ 0 of the free algebra, ZX1, X2, ..., XN, over the ring of integers in N variables X1, X2, ..., XN such that

References

Citations

  1. Smith 2007, pp. 3, 26–27
  2. Rubin & Rubin 1985, p.  109
  3. Pflugfelder 1990, p. 2
  4. Bruck 1971, p. 1
  5. Shcherbacov, Pushkashu & Shcherbacov 2021, p. 1
  6. Shcherbacov, Pushkashu & Shcherbacov 2021, p. 3, Thm. 1, 2
  7. Smith, Jonathan D. H. "Codes, Errors, and Loops". Recording of the Codes & Expansions Seminar. Retrieved 2 April 2024.
  8. Smith, Jonathan D. H. Groups, Triality, and Hyperquasigroups (PDF). Iowa State University.
  9. 1 2 Damm 2007
  10. Colbourn & Dinitz 2007, p. 497, definition 28.12
  11. Romanowska & Smith 1999, p. 93
  12. McKay, Meynert & Myrvold 2007

Sources