Bol loop

Last updated

In mathematics and abstract algebra, a Bol loop is an algebraic structure generalizing the notion of group. Bol loops are named for the Dutch mathematician Gerrit Bol who introduced them in ( Bol 1937 ).

Contents

A loop, L, is said to be a left Bol loop if it satisfies the identity

, for every a,b,c in L,

while L is said to be a right Bol loop if it satisfies

, for every a,b,c in L.

These identities can be seen as weakened forms of associativity, or a strengthened form of (left or right) alternativity.

A loop is both left Bol and right Bol if and only if it is a Moufang loop. Alternatively, a right or left Bol loop is Moufang if and only if it satisfies the flexible identity a(ba) = (ab)a . Different authors use the term "Bol loop" to refer to either a left Bol or a right Bol loop.

Properties

The left (right) Bol identity directly implies the left (right) alternative property, as can be shown by setting b to the identity.

It also implies the left (right) inverse property, as can be seen by setting b to the left (right) inverse of a, and using loop division to cancel the superfluous factor of a. As a result, Bol loops have two-sided inverses.

Bol loops are also power-associative.

Bruck loops

A Bol loop where the aforementioned two-sided inverse satisfies the automorphic inverse property, (ab)1 = a1b1 for all a,b in L, is known as a (left or right) Bruck loop or K-loop (named for the American mathematician Richard Bruck). The example in the following section is a Bruck loop.

Bruck loops have applications in special relativity; see Ungar (2002). Left Bruck loops are equivalent to Ungar's (2002) gyrocommutative gyrogroups , even though the two structures are defined differently.

Example

Let L denote the set of n x n positive definite, Hermitian matrices over the complex numbers. It is generally not true that the matrix product AB of matrices A, B in L is Hermitian, let alone positive definite. However, there exists a unique P in L and a unique unitary matrix U such that AB = PU; this is the polar decomposition of AB. Define a binary operation * on L by A * B = P. Then (L, *) is a left Bruck loop. An explicit formula for * is given by A * B = (A B2A)1/2, where the superscript 1/2 indicates the unique positive definite Hermitian square root.

Bol algebra

A (left) Bol algebra is a vector space equipped with a binary operation and a ternary operation that satisfies the following identities: [1]

and

and

and

.

Note that {.,.,.} acts as a Lie triple system. If A is a left or right alternative algebra then it has an associated Bol algebra Ab, where is the commutator and is the Jordan associator.

Related Research Articles

In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det(A), det A, or |A|. Its value characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants.

<span class="mw-page-title-main">Quasigroup</span> Magma obeying the Latin square property

In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure resembling a group in the sense that "division" is always possible. Quasigroups differ from groups mainly in that the associative and identity element properties are optional.

In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of

In linear algebra, the trace of a square matrix A, denoted tr(A), is defined to be the sum of elements on the main diagonal of A. The trace is only defined for a square matrix.

<span class="mw-page-title-main">Square matrix</span> Matrix with the same number of rows and columns

In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied.

In mathematics, a complex square matrix A is normal if it commutes with its conjugate transpose A*:

In mathematics, a Hermitian matrix is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the i-th row and j-th column is equal to the complex conjugate of the element in the j-th row and i-th column, for all indices i and j:

In linear algebra, an n-by-n square matrix A is called invertible if there exists an n-by-n square matrix B such that

In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.

In mathematics, and in particular linear algebra, the Moore–Penrose inverse of a matrix is the most widely known generalization of the inverse matrix. It was independently described by E. H. Moore in 1920, Arne Bjerhammar in 1951, and Roger Penrose in 1955. Earlier, Erik Ivar Fredholm had introduced the concept of a pseudoinverse of integral operators in 1903. When referring to a matrix, the term pseudoinverse, without further specification, is often used to indicate the Moore–Penrose inverse. The term generalized inverse is sometimes used as a synonym for pseudoinverse.

In mathematics, a Moufang loop is a special kind of algebraic structure. It is similar to a group in many ways but need not be associative. Moufang loops were introduced by Ruth Moufang (1935). Smooth Moufang loops have an associated algebra, the Malcev algebra, similar in some ways to how a Lie group has an associated Lie algebra.

In mathematics, the square root of a matrix extends the notion of square root from numbers to matrices. A matrix B is said to be a square root of A if the matrix product BB is equal to A.

In mathematics, the split-octonions are an 8-dimensional nonassociative algebra over the real numbers. Unlike the standard octonions, they contain non-zero elements which are non-invertible. Also the signatures of their quadratic forms differ: the split-octonions have a split signature (4,4) whereas the octonions have a positive-definite signature (8,0).

<span class="mw-page-title-main">Centrosymmetric matrix</span> Matrix symmetric about its center

In mathematics, especially in linear algebra and matrix theory, a centrosymmetric matrix is a matrix which is symmetric about its center.

In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. It is named after James Joseph Sylvester.

<span class="mw-page-title-main">Gyrovector space</span> Mathematical space used to study hyperbolic geometry

A gyrovector space is a mathematical concept proposed by Abraham A. Ungar for studying hyperbolic geometry in analogy to the way vector spaces are used in Euclidean geometry. Ungar introduced the concept of gyrovectors that have addition based on gyrogroups instead of vectors which have addition based on groups. Ungar developed his concept as a tool for the formulation of special relativity as an alternative to the use of Lorentz transformations to represent compositions of velocities. This is achieved by introducing "gyro operators"; two 3d velocity vectors are used to construct an operator, which acts on another 3d velocity.

In mathematics, symmetric cones, sometimes called domains of positivity, are open convex self-dual cones in Euclidean space which have a transitive group of symmetries, i.e. invertible operators that take the cone onto itself. By the Koecher–Vinberg theorem these correspond to the cone of squares in finite-dimensional real Euclidean Jordan algebras, originally studied and classified by Jordan, von Neumann & Wigner (1934). The tube domain associated with a symmetric cone is a noncompact Hermitian symmetric space of tube type. All the algebraic and geometric structures associated with the symmetric space can be expressed naturally in terms of the Jordan algebra. The other irreducible Hermitian symmetric spaces of noncompact type correspond to Siegel domains of the second kind. These can be described in terms of more complicated structures called Jordan triple systems, which generalize Jordan algebras without identity.

In algebra, an Okubo algebra or pseudo-octonion algebra is an 8-dimensional non-associative algebra similar to the one studied by Susumu Okubo. Okubo algebras are composition algebras, flexible algebras (A(BA) = (AB)A), Lie admissible algebras, and power associative, but are not associative, not alternative algebras, and do not have an identity element.

In mathematics, a mutation, also called a homotope, of a unital Jordan algebra is a new Jordan algebra defined by a given element of the Jordan algebra. The mutation has a unit if and only if the given element is invertible, in which case the mutation is called a proper mutation or an isotope. Mutations were first introduced by Max Koecher in his Jordan algebraic approach to Hermitian symmetric spaces and bounded symmetric domains of tube type. Their functorial properties allow an explicit construction of the corresponding Hermitian symmetric space of compact type as a compactification of a finite-dimensional complex semisimple Jordan algebra. The automorphism group of the compactification becomes a complex subgroup, the complexification of its maximal compact subgroup. Both groups act transitively on the compactification. The theory has been extended to cover all Hermitian symmetric spaces using the theory of Jordan pairs or Jordan triple systems. Koecher obtained the results in the more general case directly from the Jordan algebra case using the fact that only Jordan pairs associated with period two automorphisms of Jordan algebras are required.

References

  1. Irvin R. Hentzel, Luiz A. Peresi, "Special identities for Bol algebras",  Linear Algebra and its Applications436(7) · April 2012